24 resultados para Protocols clínics
em CentAUR: Central Archive University of Reading - UK
Resumo:
Most existing crop scheduling models are cultivar specific and are developed using academic resources. As such they rarely meet the particular needs of a grower. A series of protocols have been created to generate effective schedules for a changing product range using data generated on site at a commercial nursery. A screening programme has been developed to help determine a cultivar's photoperiod sensitivity and vernalisation requirement. Experimental conditions were obtained using a cold store facility set to 5degreesC and photoperiod cloches. Eight and 16 hour photoperiod treatments were achieved at low cost by growing plants in cloches of opaque plastic with a motorised rolling screen. Natural light conditions were extended where necessary using a high pressure sodium lamp. Batches of plants were grown according to different schedules based on these treatments. The screening programme found Coreopsis grandiflora 'Flying Saucers' to be a long day plant. Data to form the basis of graphical tracks was taken using variations on commercial schedules. The work provides a nursery based approach to the continuous improvement of crop scheduling practises.
Resumo:
To enhance the throughput of ad hoc networks, dual-hop relay-enabled transmission schemes have recently been proposed. Since in ad hoc networks throughput is normally related to their energy consumption, it is important to examine the impact of using relay-enabled transmissions on energy consumption. In this paper, we present an analytical energy consumption model for dual-hop relay-enabled medium access control (MAC) protocols. Based on the recently reported relay-enabled distributed coordination function (rDCF), we have shown the efficacy of the proposed analytical model. This is a generalized model and can be used to predict energy consumption in saturated relay-enabled ad hoc networks via energy decomposition. This is helpful in designing MAC protocols for cooperative communications and it is shown that using a relay results not only in a better throughput but also better energy efficiency.
Resumo:
In this paper we consider a cooperative communication system where some a priori information of wireless channels is available at the transmitter. Several opportunistic relaying strategies are developed to fully utilize the available channel information. Then an explicit expression of the outage probability is developed for each proposed cooperative scheme as well as the diversity-multiplexing tradeoff by using order statistics. Our analytical results show that the more channel information available at the transmitter, the better performance a cooperative system can achieve. When the exact values of the source-relay channels are available, the performance loss at low SNR can be effectively suppressed. When the source node has the access to the source-relay and relay-destination channels, the full diversity can be achieved by costing only one extra channel used for relaying transmission, and an optimal diversity-multiplexing tradeoff can be achieved d(r) = (N + 1)(1 - 2r), where N is the number of all possible relaying nodes.
Resumo:
Given that the next and current generation networks will coexist for a considerable period of time, it is important to improve the performance of existing networks. One such improvement recently proposed is to enhance the throughput of ad hoc networks by using dual-hop relay-based transmission schemes. Since in ad hoc networks throughput is normally related to their energy consumption, it is important to examine the impact of using relay-based transmissions on energy consumption. In this paper, we present an analytical energy consumption model for dual-hop relay-based medium access control (MAC) protocols. Based on the recently reported relay-enabled Distributed Coordination Function (rDCF), we have shown the efficacy of the proposed analytical model. This is a generalized model and can be used to predict energy consumption in saturated relay-based ad hoc networks. This model can predict energy consumption in ideal environment and with transmission errors. It is shown that using a relay results in not only better throughput but also better energy efficiency. Copyright (C) 2009 Rizwan Ahmad et al.
Resumo:
Using a cross-layer approach, two enhancement techniques applied for adaptive modulation and coding (AMC) with truncated automatic repeat request (T-ARQ) are investigated, namely, aggressive AMC (A-AMC) and constellation rearrangement (CoRe). Aggressive AMC selects the appropriate modulation and coding schemes (MCS) to achieve higher spectral efficiency, profiting from the feasibility of using different MCSs for retransmitting a packet, whereas in the CoRe-based AMC, retransmissions of the same data packet are performed using different mappings so as to provide different degrees of protection to the bits involved, thus achieving mapping diversity gain. The performance of both schemes is evaluated in terms of average spectral efficiency and average packet loss rate, which are derived in closed-form considering transmission over Nakagami-m fading channels. Numerical results and comparisons are provided. In particular, it is shown that A-AMC combined with T-ARQ yields higher spectral efficiency than the AMC-based conventional scheme while keeping the achieved packet loss rate closer to the system's requirement, and that it can achieve larger spectral efficiency objectives than that of the scheme using AMC along with CoRe.
Resumo:
Low-power medium access control (MAC) protocols used for communication of energy constraint wireless embedded devices do not cope well with situations where transmission channels are highly erroneous. Existing MAC protocols discard corrupted messages which lead to costly retransmissions. To improve transmission performance, it is possible to include an error correction scheme and transmit/receive diversity. It is possible to add redundant information to transmitted packets in order to recover data from corrupted packets. It is also possible to make use of transmit/receive diversity via multiple antennas to improve error resiliency of transmissions. Both schemes may be used in conjunction to further improve the performance. In this study, the authors show how an error correction scheme and transmit/receive diversity can be integrated in low-power MAC protocols. Furthermore, the authors investigate the achievable performance gains of both methods. This is important as both methods have associated costs (processing requirements; additional antennas and power) and for a given communication situation it must be decided which methods should be employed. The authors’ results show that, in many practical situations, error control coding outperforms transmission diversity; however, if very high reliability is required, it is useful to employ both schemes together.
Resumo:
Embedded computer systems equipped with wireless communication transceivers are nowadays used in a vast number of application scenarios. Energy consumption is important in many of these scenarios, as systems are battery operated and long maintenance-free operation is required. To achieve this goal, embedded systems employ low-power communication transceivers and protocols. However, currently used protocols cannot operate efficiently when communication channels are highly erroneous. In this study, we show how average diversity combining (ADC) can be used in state-of-the-art low-power communication protocols. This novel approach improves transmission reliability and in consequence energy consumption and transmission latency in the presence of erroneous channels. Using a testbed, we show that highly erroneous channels are indeed a common occurrence in situations, where low-power systems are used and we demonstrate that ADC improves low-power communication dramatically.