11 resultados para Protein Purification
em CentAUR: Central Archive University of Reading - UK
Resumo:
The yncE gene of Escherichia coli encodes a predicted periplasmic protein of unknown function. The gene is de-repressed under iron restriction through the action of the global iron regulator Fur. This suggests a role in iron acquisition, which is supported by the presence of the adjacent yncD gene encoding a potential TonB-dependent outer-membrane transporter. Here, the preliminary crystallographic structure of YncE is reported, revealing that it consists of a seven-bladed beta-propeller which resembles the corresponding domain of the `surface-layer protein' of Methanosarcina mazei. A full structure determination is under way in order to provide insight into the function of this protein.
Resumo:
Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, a two-step membrane filtration process was developed using a lab scale tangential flow filtration (TFF) unit with 10 kDa MWCO regenerated cellulose (RC) and polyethersulfone (PES)membranes at three different transmembrane pressure (TMP) of 1.5 bar, 2.0 bar and 2.5 bar. Two modes of filtrations were studied, with and without cleaning of membranes prior to UF-2. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effectively retained by the membrane in UF-2. Flux of permeates, rejection coefficient (R) of surfactin and proteinwere measured during the filtrations. Overall the three different TMPs applied have no significant effect in the filtrations and PES is the more suitable membrane to selectively separate surfactin from fermentation broth, achieving high recovery and level of purity. In addition this two-step UF process is scalable for larger volume of samples without affecting the original functionality of surfactin, although membranes permeability can be affected due to exposure to methanolic solution used in UF-2.
Resumo:
YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 angstrom resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 angstrom. Completion of model building and structure refinement are under way.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
Flagellar hook-basal body (HBB) complexes were purified from Rhodobacter sphaeroides. The HBB was more acid labile but more heat stable than that of Salmonella species, and protein identification revealed that HBB components were expressed only from one of the two sets of flagellar gene clusters on the R. sphaeroides genome, under the heterotrophic growth conditions tested here.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
A novel protocol for rapid and efficient purification of antimicrobial peptides from plant seedlings has been developed. Two peptides with antimicrobial activity, designated p1 and p2, were purified nearly to homogeneity from Scots pine seedlings by a combination of sulfuric acid extraction, ammonium sulfate precipitation, heat-inactivation and ion-exchange chromatography on phosphocellulose. Purified proteins had molecular masses of 11 kDa (p1) and 5.8 kDa (p2) and were identified by mass spectrometry as defensin and lipid-transfer protein, respectively. We demonstrated their growth inhibitory effects against a group of phytopathogenic fungi. Furthermore, we report for the first time molecular cloning and characterization of defensin I cDNA from Scots pine. A cDNA expression library from 7 days Scots pine seedlings was generated and used to isolate a cDNA clone corresponding to Scots pine defensin, termed PsDef1. The full-length coding sequence of PsDef1 is 252 bp in length and has an open reading frame capable to encode a protein of 83 amino residues. The deduced sequence has the typical features of plant defensins, including an endoplasmic reticulum signal sequence of 33 aa, followed by a characteristic defensin domain of 50 amino acids representing its active form. The calculated molecular weight of the mature form of PsDef1 is 5601.6 Da, which correlates well with the results of SDS-PAGE analysis. Finally, the antimicrobial properties of PsDef1 against a panel of fungi and bacteria define it as a member of the morphogenic group of plant defensins. (C) 2009 Elsevier Inc. All rights reserved.
Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process
Resumo:
Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and it is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, two-step membrane filtration processes were evaluated using centrifugal and stirred cell devices while the mechanisms of separation were investigated by particle size and surface charge measurements. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effective]), retained by the membrane in UF-2. Ultrafiltration was carried out either using centrifugal devices with 30 and 10 kDa MWCO regenerated cellulose membranes, or a stirred cell device with 10 kDa MWCO polyethersulfone (PES) and regenerated cellulose (RC) membranes. Total rejection of surfactin was consistently observed in UF-1, while in UF-2 PES membranes had the lowest rejection coefficient of 0.08 +/- 0.04. It was found that disruption of surfactin micelles, aggregation of protein contaminants and electrostatic interactions in UF-2 can further improve the selectivity of the membrane based purification technique. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K-m) clearly indicated that BbgI (6.11 x 10(4) s(-1) M-1), BbgIII (2.36 x 10(4) s(-1) M-1) and especially BbgIV (4.01 x 10(5) s(-1) M-1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1 -> 6) galactobiose (5.59 x 10(4) s(-1) M-1) than lactose (1.48 x 10(3) s(-1) M-1). Activity measurements towards other substrates (e. g. beta-D-(1 -> 6) galactobiose, beta-D-(1 -> 4) galactobiose, beta-D-(1 -> 4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Resumo:
Corticotropin-releasing factor (CRF) has been shown to have a central role in physiological adaptation to stress. It is recognized for stimulating the release of adrenocorticotropin from the anterior pituitary gland, and has more recently been implicated as a regulator of autonomic and immunological responses to stress. Much confusion has surrounded the characterization of CRF receptors, with proteins of varying molecular weights having been identified but never purified and characterized. Recently, two CRF receptors have been cloned from brain and pituitary gland, but evidence from in-situ hybridization studies suggests that further CRF receptor types exist. We therefore developed two techniques which enable the isolation of CRF receptors from whole rat brain. The use of a solid-phase CRF analogue affinity column and elution using a competing ligand resulted in the purification of a single protein of 61 kDa. A second technique was devised which allowed the co-isolation of associated signalling proteins and the identification of CRF bound species following purification. CRF was covalently cross-linked to receptors and the complex purified using antibodies specific for the ligand. This enabled the purification of a CRF receptor of approximately 65 kDa and associated alpha and beta gamma G protein subunits. This study demonstrates the successful isolation of CRF receptors which are of different molecular weights to those previously observed from affinity cross-linking studies or predicted from cloned genes. In addition, we confirm the involvement of G proteins in CRF stimulated cell signalling by demonstrating their association with purified CRF receptor.
Resumo:
Studies in non-cardiomyocytic cells have shown that phosphorylation of the Bcl-2 family protein Bad on Ser-112, Ser-136 and Ser-155 decreases its pro-apoptotic activity. Both phenylephrine (100 microM) and the cell membrane-permeating cAMP analog, 8-(4-chlorophenylthio)-cAMP (100 microM), protected against 2-deoxy-D-glucose-induced apoptosis in neonatal rat cardiac myocytes as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). In cardiac myocytes, phenylephrine primarily stimulates the alpha-adrenoceptor, but, at high concentrations (100 microM), it also increases the activity of the cAMP-dependent protein kinase, protein kinase A (PKA) through the beta-adrenoceptor. Phenylephrine (100 microM) promoted rapid phosphorylation of Bad(Ser-112) and Bad(Ser-155), though we were unable to detect phosphorylation of Bad(Ser-136). Phosphorylation of Bad(Ser-112) was antagonized by either prazosin or propranolol, indicating that this phosphorylation required stimulation of both alpha(1)- and beta-adrenoceptors. Phosphorylation of Bad(Ser-155) was antagonized only by propranolol and was thus mediated through the beta-adrenoceptor. Inhibitor studies and partial purification of candidate kinases by fast protein liquid chromatography showed that the p90 ribosomal S6 kinases, p90RSK2/3 [which are activated by the extracellular signal-regulated kinases 1 and 2 (ERK1/2)] directly phosphorylated Bad(Ser-112), whereas the PKA catalytic subunit directly phosphorylated Bad(Ser-155). However, efficient phosphorylation of Bad(Ser-112) also required PKA activity. These data suggest that, although p90RSK2/3 phosphorylate Bad(Ser-112) directly, phosphorylation of this site is enhanced by phosphorylation of Bad(Ser-155). These phosphorylations potentially diminish the pro-apoptotic activity of Bad and contribute to the cytoprotective effects of phenylephrine and 8-(4-chlorophenylthio)-cAMP.