44 resultados para Protein Composition
em CentAUR: Central Archive University of Reading - UK
Resumo:
Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.
Resumo:
BACKGROUND The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperature
Resumo:
Wheat gluten proteins, gliadins and glutenins, are of great importance in determining the unique biomechanical properties of wheat. Studies have therefore been carried out to determine their pathways and mechanisms of synthesis, folding, and deposition in protein bodies. In the present work, a set of transgenic wheat lines has been studied with strongly suppressed levels of γ-gliadins and/or all groups of gliadins, using light and fluorescence microscopy combined with immunodetection using specific antibodies for γ-gliadins and HMW glutenin subunits. These lines represent a unique material to study the formation and fusion of protein bodies in developing seeds of wheat. Higher amounts of HMW subunits were present in most of the transgenic lines but only the lines with suppression of all gliadins showed differences in the formation and fusion of the protein bodies. Large rounded protein bodies were found in the wild-type lines and the transgenic lines with reduced levels of γ-gliadins, while the lines with all gliadins down-regulated had protein bodies of irregular shape and irregular formation. The size and number of inclusions, which have been reported to contain triticins, were also higher in the protein bodies in the lines with all the gliadins down-regulated. Changes in the protein composition and PB morphology reported in the transgenic lines with all gliadins down-regulated did not result in marked changes in the total protein content or instability of the different fractions.
Resumo:
This review article addresses recent advances in the analysis of foods and food components by capillary electrophoresis (CE). CE has found application to a number of important areas of food analysis, including quantitative chemical analysis of food additives, biochemical analysis of protein composition, and others. The speed, resolution and simplicity of CE, combined with low operating costs, make the technique an attractive option for the development of improved methods of food analysis for the new millennium.
Resumo:
Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur ( ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron- transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron- rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron- containing proteins is repressed under iron- restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of Fe-55-labeled E. coli proteins revealed a marked decrease in iron- protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron- sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure alpha-lactoglobulin solution was in excess of 1.5 mg/cm(2) of membrane. This binding capacity was reduced to approximately 1.2 mg/cm(2) when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.
Resumo:
Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.
Resumo:
This study investigates the quality of retail milk labelled as Jersey & Guernsey (JG) when compared with milk without breed specifications (NS) and repeatability of differences over seasons and years. 16 different brands of milk (4 Jersey & Guernsey, 12 non specified breed) were sampled over 2 years on 4 occasions. JG milk was associated with both favourable traits for human health, such as the higher total protein, total casein, α-casein, β-casein, κ-casein and α-tocopherol contents, and unfavourable traits, such as the higher concentrations of saturated fat, C12:0, C14:0 and lower concentrations of monounsaturated fatty acids. In summer, JG milk had a higher omega-3:omega-6 ratio than had NS milk. Also, the relative increase in omega-3 fatty acids and α-tocopherol, from winter to summer, was greater in JG milk. The latter characteristic could be of use in breeding schemes and farming systems producing niche dairy products. Seasonality had a more marked impact on the fatty acid composition of JG milk than had NS milk, while the opposite was found for protein composition. Potential implication for the findings in human health, producers, industry and consumers are considered.
Resumo:
AIM: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. METHODS AND RESULTS: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. CONCLUSION: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.
Resumo:
Aim: To investigate the effect of native, heated and glycated bovine serum albumin (BSA) on the ulcerative colitis (UC) and non-UC colonic microbiota in vitro. Methods and Results: Continuous flow culture (CFC) models of the human colonic microbiota inoculated with faeces from UC and non-UC volunteers were maintained on BSA as growth substrate. Changes in bacterial populations and short-chain fatty acids were determined. UC and non-UC microbiota differed significantly in microbial populations, with elevated numbers of sulfate-reducing bacteria (SRB) and clostridia in the microbiota from UC patients. Compared with native BSA, glycated BSA modulated the gut microbiota of UC patients in vitro towards a more detrimental community structure with significant increases in putatively harmful bacteria (clostridia, bacteroides and SRB; P < 0.009) and decreases in dominant and putatively beneficial bacterial groups (eubacteria and bifidobacteria; P < 0.0004). The levels of beneficial short-chain fatty acids were significantly decreased by heated or glycated BSA, but were increased significantly by native BSA. Conclusion: The UC colonic microbiota maintained in CFC was significantly modified by glycated BSA. Significance and Impact of the Study: Results suggest that dietary glycated protein may impact upon the composition and activity of the colonic microbiota, an important environmental variable in UC.
Resumo:
The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.
Resumo:
A study was designed to examine the relationships between protein, condensed tannin and cell wall carbohydrate content and composition and the nutritional quality of seven tropical legumes (Desmodium ovalifolium, Flemingia macrophylla, Leucaena leucocephala, L pallida, L macrophylla, Calliandra calothyrsus and Clitotia fairchildiana). Among the legume species studied, D ovalifolium showed the lowest concentration of nitrogen, while L leucocephala showed the highest. Fibre (NDF) content was lowest in C calothyrsus, L Leucocephala and L pallida and highest in L macrophylla, which had no measurable condensed tannins. The highest tannin concentration was found in C calothyrsus. Total non-structural polysaccharides (NSP) varied among legumes species (lowest in C calothyrsus and highest in D ovalifolium), and glucose and uronic acids were the most abundant carbohydrate constituents in all legumes. Total NSP losses were lowest in F macrophylla and highest in L leucocephala and L pallida. Gas accumulation and acetate and propionate levels were 50% less with F macrophylla and D ovalifolium as compared with L leucocephala. The highest levels of branched-chain fatty acids were observed with non-tanniniferous legumes, and negative concentrations were observed with some of the legumes with high tannin content (D ovalifolium and F macrophylla). Linear regression analysis showed that the presence of condensed tannins was more related to a reduction of the initial rate of gas production (0-48 h) than to the final amount of gas produced or the extent (144h) of dry matter degradation, which could be due to differences in tannin chemistry. Consequently, more attention should be given in the future to elucidating the impact of tannin structure on the nutritional quality of tropical forage legumes. (C) 2003 Society of Chemical Industry.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.