4 resultados para Propidium monoazide

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO center dot) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced prostate cancer is not curable by current treatment strategies indicating a significant need for new chemotherapeutic options. Highly substituted ansatitanocene compounds have shown promising cytotoxic activity in a range of cancers. The objectives of this study are to examine the effects of these titanocene compounds on prostate cancer cells. Prostate cell lines were treated with three novel titanocene compounds and compared to titanocene dichloride and cisplatin. Percent apoptosis, viability and cell cycle were assessed using propidium iodide DNA incorporation with flow cytometry. Cytochrome C was assessed by western blotting of mitochondrial and cytoplasmic fractions. Apoptosis Inducing Factor was assessed by confocal microscopy. These novel compounds induced more apoptosis compared to cisplatin in a dose dependent manner. Compound Y had the most significant effect on cell cycle and apoptosis. Despite the release of cytochrome C from the mitochondrial fraction there was no inhibition of apoptosis with the pan caspase inhibitor, ZVAD-FMK. AIF was shown to translocate from the cytosol to the nucleus mediating a caspase independent cell death. Bcl-2 over expressing PC-3 cells, which were resistant to cisplatin induced apoptosis, underwent apoptosis following treatment with all the titanocene compounds. This study demonstrates possible mechanisms by which these novel titanocene compounds can mediate their apoptotic effect in vitro. The fact that they can induce more apoptosis than cisplatin in advanced cancer cell lines would confer an advantage over cisplatin. They represent exciting new agents with future potential for the treatment of advanced prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to examine a possible association between resistance of two Escherichia coli strains to high hydrostatic pressure and the susceptibility of their cell membranes to pressure-induced damage. Cells were exposed to pressures between 100 and 700 MPa at room temperature (~20C) in phosphate-buffered-saline. In the more pressure-sensitive strain E. coli 8164, loss of viability occurred at pressures between 100 MPa and 300 MPa and coincided with irreversible loss of membrane integrity as indicated by uptake of propidium iodide (PI) and leakage of protein of molecular mass between 9 and 78 kDa from the cells. Protein release increased to a maximum at 400 MPa then decreased, possibly due to intracellular aggregation at the higher pressures. In the pressure-resistant strain E. coli J1, PI was taken up during pressure treatment but not after decompression indicating that cells were able to reseal their membranes. Loss of viability in strain J1 coincided with the transient loss of membrane integrity between approximately 200 MPa and 600 MPa. In E. coli J1 leakage of protein occurred before loss of viability and the released protein was of low molecular mass, between 8 and 11 kDa and may have been of periplasmic origin. In these two strains differences in pressure resistance appeared to be related to differences in the ability of their membranes to withstand disruption by pressure. However it appears that transient loss of membrane integrity during pressure can lead to cell death irrespective of whether cells can reseal their membranes afterwards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.