14 resultados para Process optimisation
em CentAUR: Central Archive University of Reading - UK
Resumo:
In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.
Resumo:
During spray drying, emphasis is placed on process optimisation to generate favourable particle morphological and flow properties. The effect of the initial feed solution composition on the drug release from the prepared microparticles is rarely considered. We investigated the effects of solvent composition, feed solution concentration and drug-loading on sodium salicylate, hydrocortisone and triamcinolone release from spray dried Eudragit L100 microparticles. Eudragit L100 is a pH-responsive polymer whose dissolution threshold is pH 6 so dissolution testing of the prepared microparticles at pH 5 and 1.2 illustrated non-polymer controlled burst release. Increasing the water content of the initial ethanolic feed solution significantly reduced hydrocortisone burst release at pH 5, as did reducing the feed solution concentration. These findings caution that changes in feed solution concentration or solvent composition not only affect particles’ morphological characteristics but can also negatively alter their drug release properties. This work also illustrate that drug-free microparticles can have different morphological properties to drug-loaded microparticles. Therefore, process optimisation needs to be carried out using drug-loaded systems. Depending on the physicochemical properties of the encapsulated API, drug-loading can affect the polymer solubility in the initial feed solution with consequent impact on microparticles morphological and release properties.
Resumo:
Climate change in the UK is expected to cause increases in temperatures, altered precipitation patterns and more frequent and extreme weather events. In this review we discuss climate effects on dissolved organic matter (DOM), how altered DOM and water physico-chemical properties will affect treatment processes and assess the utility of techniques used to remove DOM and monitor water quality. A critical analysis of the literature has been undertaken with a focus on catchment drivers of DOM character, removal of DOM via coagulation and the formation of disinfectant by-products (DBPs). We suggest that: (1) upland catchments recovering from acidification will continue to produce more DOM with a greater hydrophobic fraction as solubility controls decrease; (2) greater seasonality in DOM export is likely in future due to altered precipitation patterns; (3) changes in species diversity and water properties could encourage algal blooms; and (4) that land management and vegetative changes may have significant effects on DOM export and treatability but require further research. Increases in DBPs may occur where catchments have high influence from peatlands or where algal blooms become an issue. To increase resilience to variable DOM quantity and character we suggest that one or more of the following steps are undertaken at the treatment works: a) ‘enhanced coagulation’ optimised for DOM removal; b) switching from aluminium to ferric coagulants and/or incorporating coagulant aids; c) use of magnetic ion-exchange (MIEX) pre-coagulation; and d) activated carbon filtration post-coagulation. Fluorescence and UV absorbance techniques are highlighted as potential methods for low-cost, rapid on-line process optimisation to improve DOM removal and minimise DBPs.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.
Resumo:
Based on integrated system optimisation and parameter estimation a method is described for on-line steady state optimisation which compensates for model-plant mismatch and solves a non-linear optimisation problem by iterating on a linear - quadratic representation. The method requires real process derivatives which are estimated using a dynamic identification technique. The utility of the method is demonstrated using a simulation of the Tennessee Eastman benchmark chemical process.
Nonlinear system identification using particle swarm optimisation tuned radial basis function models
Resumo:
A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) which has been designed to achieve the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A method based on Broyden's ideas is used for approximating some derivative trajectories required. Ways for handling con straints on both manipulated and state variables are described. Further, a method for coping with batch-to- batch dynamic variations in the process, which are common in practice, is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch processes. The algorithm is success fully applied to a benchmark problem consisting of the input profile optimisation of a fed-batch fermentation process.
Resumo:
In most commercially available predictive control packages, there is a separation between economic optimisation and predictive control, although both algorithms may be part of the same software system. This method is compared in this article with two alternative approaches where the economic objectives are directly included in the predictive control algorithm. Simulations are carried out using the Tennessee Eastman process model.
Resumo:
This paper describes the recent developments and improvements made to the variable radius niching technique called Dynamic Niche Clustering (DNC). DNC is fitness sharing based technique that employs a separate population of overlapping fuzzy niches with independent radii which operate in the decoded parameter space, and are maintained alongside the normal GA population. We describe a speedup process that can be applied to the initial generation which greatly reduces the complexity of the initial stages. A split operator is also introduced that is designed to counteract the excessive growth of niches, and it is shown that this improves the overall robustness of the technique. Finally, the effect of local elitism is documented and compared to the performance of the basic DNC technique on a selection of 2D test functions. The paper is concluded with a view to future work to be undertaken on the technique.
Resumo:
Information technology has become heavily embedded in business operations. As business needs change over time, IT applications are expected to continue providing required support. Whether the existing IT applications are still fit for the business purpose they were intended or new IT applications should be introduced, is a strategic decision for business, IT and business-aligned IT. In this paper, we present a method which aims to analyse business functions and IT roles, and to evaluate business-aligned IT from both social and technical perspectives. The method introduces a set of techniques that systematically supports the evaluation of the existing IT applications in relation to their technical capabilities for maximising business value. Furthermore, we discuss the evaluation process and results which are illustrated and validated through a real-life case study of a UK borough council, and followed by discussion on implications for researchers and practitioners.
Resumo:
High ionic calcium concentration and the absence of caseinmacropeptides (CMP) in acid whey could influence the production of angiotensin-I-converting enzyme (ACE)-inhibitory hydrolysate and its bioactivity through the application of the integrative process. Therefore, the aim of the present study was to produce a hydrolysate from acid whey applying the integrative process. Process performance was evaluated based on protein adsorption capacity and conversion in relation to ACE-inhibitory activity (ACEi%) and ionic calcium concentration. Hydrolysates with high potency of their biological activity were produced (IC50 = 206-353 μg mL-1). High ionic calcium concentration in acid whey contributed to ACE-inhibitory activity. However, low β-lactoglobulin adsorption and conversion was observed. Optimisation of the resin volume increased the adsorption of β-lactoglobulin significantly but with lower selectivity. The changes in conversion value were not significant even at higher concentration of enzyme. Several ACE inhibitors derived from β-lactoglobulin that were identified before in sweet whey hydrolysates such as, IIAEKT, IIAE, IVTQ, LIVTQ, LIVTQT, LDAQ and LIVT were found. New peptides such as, SNICNI and ECCHGD derived from α-lactalbumin and BSA respectively were identified.