65 resultados para Probability distribution functions

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the statistical properties of tropical ice clouds (ice water content, visible extinction, effective radius, and total number concentration) derived from 3 yr of ground-based radar–lidar retrievals from the U.S. Department of Energy Atmospheric Radiation Measurement Climate Research Facility in Darwin, Australia, are compared with the same properties derived using the official CloudSat microphysical retrieval methods and from a simpler statistical method using radar reflectivity and air temperature. It is shown that the two official CloudSat microphysical products (2B-CWC-RO and 2B-CWC-RVOD) are statistically virtually identical. The comparison with the ground-based radar–lidar retrievals shows that all satellite methods produce ice water contents and extinctions in a much narrower range than the ground-based method and overestimate the mean vertical profiles of microphysical parameters below 10-km height by over a factor of 2. Better agreements are obtained above 10-km height. Ways to improve these estimates are suggested in this study. Effective radii retrievals from the standard CloudSat algorithms are characterized by a large positive bias of 8–12 μm. A sensitivity test shows that in response to such a bias the cloud longwave forcing is increased from 44.6 to 46.9 W m−2 (implying an error of about 5%), whereas the negative cloud shortwave forcing is increased from −81.6 to −82.8 W m−2. Further analysis reveals that these modest effects (although not insignificant) can be much larger for optically thick clouds. The statistical method using CloudSat reflectivities and air temperature was found to produce inaccurate mean vertical profiles and probability distribution functions of effective radius. This study also shows that the retrieval of the total number concentration needs to be improved in the official CloudSat microphysical methods prior to a quantitative use for the characterization of tropical ice clouds. Finally, the statistical relationship used to produce ice water content from extinction and air temperature obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is evaluated for tropical ice clouds. It is suggested that the CALIPSO ice water content retrieval is robust for tropical ice clouds, but that the temperature dependence of the statistical relationship used should be slightly refined to better reproduce the radar–lidar retrievals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne high resolution in situ measurements of a large set of trace gases including ozone (O3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003. In the LMS a distinct spring maximum and autumn minimum is observed in O3, whereas its annual cycle in the UT is shifted by 2–3 months later towards the end of the year. The more variable H2O measurements reveal a maximum during summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments. For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer. Normalised mixing entropy values for O3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous ranked probability score (CRPS) is a frequently used scoring rule. In contrast with many other scoring rules, the CRPS evaluates cumulative distribution functions. An ensemble of forecasts can easily be converted into a piecewise constant cumulative distribution function with steps at the ensemble members. This renders the CRPS a convenient scoring rule for the evaluation of ‘raw’ ensembles, obviating the need for sophisticated ensemble model output statistics or dressing methods prior to evaluation. In this article, a relation between the CRPS score and the quantile score is established. The evaluation of ‘raw’ ensembles using the CRPS is discussed in this light. It is shown that latent in this evaluation is an interpretation of the ensemble as quantiles but with non-uniform levels. This needs to be taken into account if the ensemble is evaluated further, for example with rank histograms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method is presented to calculate economic optimum fungicide doses accounting for the risk-aversion of growers responding to variability in disease severity between crops. Simple dose-response and disease-yield loss functions are used to estimate net disease-related costs (fungicide cost, plus disease-induced yield loss) as a function of dose and untreated severity. With fairly general assumptions about the shapes of the probability distribution of disease severity and the other functions involved, we show that a choice of fungicide dose which minimises net costs on average across seasons results in occasional large net costs caused by inadequate control in high disease seasons. This may be unacceptable to a grower with limited capital. A risk-averse grower can choose to reduce the size and frequency of such losses by applying a higher dose as insurance. For example, a grower may decide to accept ‘high loss’ years one year in ten or one year in twenty (i.e. specifying a proportion of years in which disease severity and net costs will be above a specified level). Our analysis shows that taking into account disease severity variation and risk-aversion will usually increase the dose applied by an economically rational grower. The analysis is illustrated with data on septoria tritici leaf blotch of wheat caused by Mycosphaerella graminicola. Observations from untreated field plots at sites across England over three years were used to estimate the probability distribution of disease severities at mid-grain filling. In the absence of a fully reliable disease forecasting scheme, reducing the frequency of ‘high loss’ years requires substantially higher doses to be applied to all crops. Disease resistant cultivars reduce both the optimal dose at all levels of risk and the disease-related costs at all doses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a method for describing the distribution of observed temperatures on any day of the year such that the distribution and summary statistics of interest derived from the distribution vary smoothly through the year. The method removes the noise inherent in calculating summary statistics directly from the data thus easing comparisons of distributions and summary statistics between different periods. The method is demonstrated using daily effective temperatures (DET) derived from observations of temperature and wind speed at De Bilt, Holland. Distributions and summary statistics are obtained from 1985 to 2009 and compared to the period 1904–1984. A two-stage process first obtains parameters of a theoretical probability distribution, in this case the generalized extreme value (GEV) distribution, which describes the distribution of DET on any day of the year. Second, linear models describe seasonal variation in the parameters. Model predictions provide parameters of the GEV distribution, and therefore summary statistics, that vary smoothly through the year. There is evidence of an increasing mean temperature, a decrease in the variability in temperatures mainly in the winter and more positive skew, more warm days, in the summer. In the winter, the 2% point, the value below which 2% of observations are expected to fall, has risen by 1.2 °C, in the summer the 98% point has risen by 0.8 °C. Medians have risen by 1.1 and 0.9 °C in winter and summer, respectively. The method can be used to describe distributions of future climate projections and other climate variables. Further extensions to the methodology are suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results are presented from a new web application called OceanDIVA - Ocean Data Intercomparison and Visualization Application. This tool reads hydrographic profiles and ocean model output and presents the data on either depth levels or isotherms for viewing in Google Earth, or as probability density functions (PDFs) of regional model-data misfits. As part of the CLIVAR Global Synthesis and Observations Panel, an intercomparison of water mass properties of various ocean syntheses has been undertaken using OceanDIVA. Analysis of model-data misfits reveals significant differences between the water mass properties of the syntheses, such as the ability to capture mode water properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many time series are measured monthly, either as averages or totals, and such data often exhibit seasonal variability-the values of the series are consistently larger for some months of the year than for others. A typical series of this type is the number of deaths each month attributed to SIDS (Sudden Infant Death Syndrome). Seasonality can be modelled in a number of ways. This paper describes and discusses various methods for modelling seasonality in SIDS data, though much of the discussion is relevant to other seasonally varying data. There are two main approaches, either fitting a circular probability distribution to the data, or using regression-based techniques to model the mean seasonal behaviour. Both are discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed VSW, the interplanetary magnetic field strength B, and the open solar flux FS. Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using VSW, FS, or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov–Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10° two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2° global model and a 1/8° assimilative model, might have skill only on some sections in the region

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method was developed to evaluate crop disease predictive models for their economic and environmental benefits. Benefits were quantified as the value of a prediction measured by costs saved and fungicide dose saved. The value of prediction was defined as the net gain made by using predictions, measured as the difference between a scenario where predictions are available and used and a scenario without prediction. Comparable 'with' and 'without' scenarios were created with the use of risk levels. These risk levels were derived from a probability distribution fitted to observed disease severities. These distributions were used to calculate the probability that a certain disease induced economic loss was incurred. The method was exemplified by using it to evaluate a model developed for Mycosphaerella graminicola risk prediction. Based on the value of prediction, the tested model may have economic and environmental benefits to growers if used to guide treatment decisions on resistant cultivars. It is shown that the value of prediction measured by fungicide dose saved and costs saved is constant with the risk level. The model could also be used to evaluate similar crop disease predictive models.