105 resultados para Prediction of Heterogeneous Variables System
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new method for assessing forecast skill and predictability that involves the identification and tracking of extratropical cyclones has been developed and implemented to obtain detailed information about the prediction of cyclones that cannot be obtained from more conventional analysis methodologies. The cyclones were identified and tracked along the forecast trajectories, and statistics were generated to determine the rate at which the position and intensity of the forecasted storms diverge from the analyzed tracks as a function of forecast lead time. The results show a higher level of skill in predicting the position of extratropical cyclones than the intensity. They also show that there is potential to improve the skill in predicting the position by 1 - 1.5 days and the intensity by 2 - 3 days, via improvements to the forecast model. Further analysis shows that forecasted storms move at a slower speed than analyzed storms on average and that there is a larger error in the predicted amplitudes of intense storms than the weaker storms. The results also show that some storms can be predicted up to 3 days before they are identified as an 850-hPa vorticity center in the analyses. In general, the results show a higher level of skill in the Northern Hemisphere (NH) than the Southern Hemisphere (SH); however, the rapid growth of NH winter storms is not very well predicted. The impact that observations of different types have on the prediction of the extratropical cyclones has also been explored, using forecasts integrated from analyses that were constructed from reduced observing systems. A terrestrial, satellite, and surface-based system were investigated and the results showed that the predictive skill of the terrestrial system was superior to the satellite system in the NH. Further analysis showed that the satellite system was not very good at predicting the growth of the storms. In the SH the terrestrial system has significantly less skill than the satellite system, highlighting the dominance of satellite observations in this hemisphere. The surface system has very poor predictive skill in both hemispheres.
Resumo:
A regional study of the prediction of extratropical cyclones by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) has been performed. An objective feature-tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast error statistics have then been produced for the position, intensity, and propagation speed of the storms. In previous work, data limitations meant it was only possible to present the diagnostics for the entire Northern Hemisphere (NH) or Southern Hemisphere. A larger data sample has allowed the diagnostics to be computed separately for smaller regions around the globe and has made it possible to explore the regional differences in the prediction of storms by the EPS. Results show that in the NH there is a larger ensemble mean error in the position of storms over the Atlantic Ocean. Further analysis revealed that this is mainly due to errors in the prediction of storm propagation speed rather than in direction. Forecast storms propagate too slowly in all regions, but the bias is about 2 times as large in the NH Atlantic region. The results show that storm intensity is generally overpredicted over the ocean and underpredicted over the land and that the absolute error in intensity is larger over the ocean than over the land. In the NH, large errors occur in the prediction of the intensity of storms that originate as tropical cyclones but then move into the extratropics. The ensemble is underdispersive for the intensity of cyclones (i.e., the spread is smaller than the mean error) in all regions. The spatial patterns of the ensemble mean error and ensemble spread are very different for the intensity of cyclones. Spatial distributions of the ensemble mean error suggest that large errors occur during the growth phase of storm development, but this is not indicated by the spatial distributions of the ensemble spread. In the NH there are further differences. First, the large errors in the prediction of the intensity of cyclones that originate in the tropics are not indicated by the spread. Second, the ensemble mean error is larger over the Pacific Ocean than over the Atlantic, whereas the opposite is true for the spread. The use of a storm-tracking approach, to both weather forecasters and developers of forecast systems, is also discussed.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.
Resumo:
The precision farmer wants to manage the variation in soil nutrient status continuously, which requires reliable predictions at places between sampling sites. Ordinary kriging can be used for prediction if the data are spatially dependent and there is a suitable variogram model. However, even if data are spatially correlated, there are often few soil sampling sites in relation to the area to be managed. If intensive ancillary data are available and these are coregionalized with the sparse soil data, they could be used to increase the accuracy of predictions of the soil properties by methods such as cokriging, kriging with external drift and regression kriging. This paper compares the accuracy of predictions of the plant available N properties (mineral N and potentially available N) for two arable fields in Bedfordshire, United Kingdom, from ordinary kriging, cokriging, kriging with external drift and regression kriging. For the last three, intensive elevation data were used with the soil data. The mean squared errors of prediction from these methods of kriging were determined at validation sites where the values were known. Kriging with external drift resulted in the smallest mean squared error for two of the three properties examined, and cokriging for the other. The results suggest that the use of intensive ancillary data can increase the accuracy of predictions of soil properties in arable fields provided that the variables are related spatially. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) is a World Weather Research Programme project. One of its main objectives is to enhance collaboration on the development of ensemble prediction between operational centers and universities by increasing the availability of ensemble prediction system (EPS) data for research. This study analyzes the prediction of Northern Hemisphere extratropical cyclones by nine different EPSs archived as part of the TIGGE project for the 6-month time period of 1 February 2008–31 July 2008, which included a sample of 774 cyclones. An objective feature tracking method has been used to identify and track the cyclones along the forecast trajectories. Forecast verification statistics have then been produced [using the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis as the truth] for cyclone position, intensity, and propagation speed, showing large differences between the different EPSs. The results show that the ECMWF ensemble mean and control have the highest level of skill for all cyclone properties. The Japanese Meteorological Administration (JMA), the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC) have 1 day less skill for the position of cyclones throughout the forecast range. The relative performance of the different EPSs remains the same for cyclone intensity except for NCEP, which has larger errors than for position. NCEP, the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), and the Australian Bureau of Meteorology (BoM) all have faster intensity error growth in the earlier part of the forecast. They are also very underdispersive and significantly underpredict intensities, perhaps due to the comparatively low spatial resolutions of these EPSs not being able to accurately model the tilted structure essential to cyclone growth and decay. There is very little difference between the levels of skill of the ensemble mean and control for cyclone position, but the ensemble mean provides an advantage over the control for all EPSs except CPTEC in cyclone intensity and there is an advantage for propagation speed for all EPSs. ECMWF and JMA have an excellent spread–skill relationship for cyclone position. The EPSs are all much more underdispersive for cyclone intensity and propagation speed than for position, with ECMWF and CMC performing best for intensity and CMC performing best for propagation speed. ECMWF is the only EPS to consistently overpredict cyclone intensity, although the bias is small. BoM, NCEP, UKMO, and CPTEC significantly underpredict intensity and, interestingly, all the EPSs underpredict the propagation speed, that is, the cyclones move too slowly on average in all EPSs.
Resumo:
The three lowest (1(2)A('), 2(2)A('), and 1(2)A(')) potential-energy surfaces of the C2Cl radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the (CCCl)-C-12-C-12-Cl-35 isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous. (c) 2005 American Institute of Physics.
Resumo:
Variational data assimilation systems for numerical weather prediction rely on a transformation of model variables to a set of control variables that are assumed to be uncorrelated. Most implementations of this transformation are based on the assumption that the balanced part of the flow can be represented by the vorticity. However, this assumption is likely to break down in dynamical regimes characterized by low Burger number. It has recently been proposed that a variable transformation based on potential vorticity should lead to control variables that are uncorrelated over a wider range of regimes. In this paper we test the assumption that a transform based on vorticity and one based on potential vorticity produce an uncorrelated set of control variables. Using a shallow-water model we calculate the correlations between the transformed variables in the different methods. We show that the control variables resulting from a vorticity-based transformation may retain large correlations in some dynamical regimes, whereas a potential vorticity based transformation successfully produces a set of uncorrelated control variables. Calculations of spatial correlations show that the benefit of the potential vorticity transformation is linked to its ability to capture more accurately the balanced component of the flow.
Resumo:
The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.
Resumo:
The potential of a fibre optic sensor, detecting light backscatter in a cheese vat during coagulation and syneresis, to predict curd moisture, fat loses and curd yield was examined. Temperature, cutting time and calcium levels were varied to assess the strength of the predictions over a range of processing conditions. Equations were developed using a combination of independent variables, milk compositional and light backscatter parameters. Fat losses, curd yield and curd moisture content were predicted with a standard error of prediction (SEP) of +/- 2.65 g 100 g(-1) (R-2 = 0.93), +/- 0.95% (R-2 = 0.90) and +/- 1.43% (R-2 = 0.94), respectively. These results were used to develop a model for predicting curd moisture as a function of time during syneresis (SEP = +/- 1.72%; R-2 = 0.95). By monitoring coagulation and syneresis, this sensor technology could be employed to control curd moisture content, thereby improving process control during cheese manufacture. (c) 2007 Elsevier Ltd. All rights reserved..
Resumo:
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener’s abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387–399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model’s components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex “intelligibility maps” from room designs. © 2012 Acoustical Society of America
Resumo:
The prediction of Northern Hemisphere (NH) extratropical cyclones by nine different ensemble prediction systems(EPSs), archived as part of The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), has recently been explored using a cyclone tracking approach. This paper provides a continuation of this work, extending the analysis to the Southern Hemisphere (SH). While the EPSs have larger error in all cyclone properties in the SH, the relative performance of the different EPSs remains broadly consistent between the two hemispheres. Some interesting differences are also shown. The Chinese Meteorological Administration (CMA) EPS has a significantly lower level of performance in the SH compared to the NH. Previous NH results showed that the Centro de Previsao de Tempo e Estudos Climaticos (CPTEC) EPS underpredicts cyclone intensity. The results of this current study show that this bias is significantly larger in the SH. The CPTEC EPS also has very little spread in both hemispheres. As with the NH results, cyclone propagation speed is underpredicted by all the EPSs in the SH. To investigate this further, the bias was also computed for theECMWFhigh-resolution deterministic forecast. The bias was significantly smaller than the lower resolution ECMWF EPS.
Resumo:
Some of the techniques used to model nitrogen (N) and phosphorus (P) discharges from a terrestrial catchment to an estuary are discussed and applied to the River Tamar and Tamar Estuary system in Southwest England, U.K. Data are presented for dissolved inorganic nutrient concentrations in the Tamar Estuary and compared with those from the contrasting, low turbidity and rapidly flushed Tweed Estuary in Northeast England. In the Tamar catchment, simulations showed that effluent nitrate loads for typical freshwater flows contributed less than 1% of the total N load. The effect of effluent inputs on ammonium loads was more significant (∼10%). Cattle, sheep and permanent grassland dominated the N catchment export, with diffuse-source N export greatly dominating that due to point sources. Cattle, sheep, permanent grassland and cereal crops generated the greatest rates of diffuse-source P export. This reflected the higher rates of P fertiliser applications to arable land and the susceptibility of bare, arable land to P export in wetter winter months. N and P export to the Tamar Estuary from human sewage was insignificant. Non-conservative behaviour of phosphate was particularly marked in the Tamar Estuary. Silicate concentrations were slightly less than conservative levels, whereas nitrate was essentially conservative. The coastal sea acted as a sink for these terrestrially derived nutrients. A pronounced sag in dissolved oxygen that was associated with strong nitrite and ammonium peaks occurred in the turbidity maximum region of the Tamar Estuary. Nutrient behaviour within the Tweed was very different. The low turbidity and rapid flushing ensured that nutrients there were essentially conservative, so that flushing of nutrients to the coastal zone from the river occurred with little estuarine modification.
Resumo:
The formulation and performance of the Met Office visibility analysis and prediction system are described. The visibility diagnostic within the limited-area Unified Model is a function of humidity and a prognostic aerosol content. The aerosol model includes advection, industrial and general urban sources, plus boundary-layer mixing and removal by rain. The assimilation is a 3-dimensional variational scheme in which the visibility observation operator is a very nonlinear function of humidity, aerosol and temperature. A quality control scheme for visibility data is included. Visibility observations can give rise to humidity increments of significant magnitude compared with the direct impact of humidity observations. We present the results of sensitivity studies which show the contribution of different components of the system to improved skill in visibility forecasts. Visibility assimilation is most important within the first 6-12 hours of the forecast and for visibilities below 1 km, while modelling of aerosol sources and advection is important for slightly higher visibilities (1-5 km) and is still significant at longer forecast times