7 resultados para Practical science
em CentAUR: Central Archive University of Reading - UK
Resumo:
Graphical tracking is a technique for crop scheduling where the actual plant state is plotted against an ideal target curve which encapsulates all crop and environmental characteristics. Management decisions are made on the basis of the position of the actual crop against the ideal position. Due to the simplicity of the approach it is possible for graphical tracks to be developed on site without the requirement for controlled experimentation. Growth models and graphical tracks are discussed, and an implementation of the Richards curve for graphical tracking described. In many cases, the more intuitively desirable growth models perform sub-optimally due to problems with the specification of starting conditions, environmental factors outside the scope of the original model and the introduction of new cultivars. Accurate specification for a biological model requires detailed and usually costly study, and as such is not adaptable to a changing cultivar range and changing cultivation techniques. Fitting of a new graphical track for a new cultivar can be conducted on site and improved over subsequent seasons. Graphical tracking emphasises the current position relative to the objective, and as such does not require the time consuming or system specific input of an environmental history, although it does require detailed crop measurement. The approach is flexible and could be applied to a variety of specification metrics, with digital imaging providing a route for added value. For decision making regarding crop manipulation from the observed current state, there is a role for simple predictive modelling over the short term to indicate the short term consequences of crop manipulation.
Resumo:
In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
Horticultural knowledge and skills training have been with humankind for some 10,000 to 20,000 years. With permanent settlement and rising wealth and trade, horticulture products and services became a source of fresh food for daily consumption, and a source of plant material in developing a quality environment and lifestyle. The knowledge of horticulture and the skills of its practitioners have been demonstrated through the advancing civilizations in both eastern and western countries. With the rise of the Agricultural Revolutions in Great Britain, and more widely across Continental Europe in the 17th and 18th centuries, as well as the move towards colonisation and early migration to the New Worlds, many westernised countries established the early institutions that would provide education and training in agriculture and horticulture. Today many of these colleges and universities provide undergraduate, postgraduate and vocational and technical training that specifically targets horticulture and/or horticultural science with some research and teaching institutions also providing extension and advisory services to industry. The objective of this chapter is to describe the wider pedagogic and educational context in which those concerned with horticulture operate, the institutional structures that target horticulture and horticultural science education and training internationally; examine changing educational formats, especially distance education; and consider strategies for attracting and retaining young people in the delivery of world-class horticultural education. In this chapter we set the context by investigating the horticultural education and training options available, the constraints that prevent young people entering horticulture, and suggest strategies that would attract and retain these students. We suggest that effective strategies and partnerships be put in place by the institution, the government and most importantly the industry to provide for undergraduate and postgraduate education in horticulture and horticultural science; that educational and vocational training institutions, government, and industry need to work more effectively together to improve communication about horticulture and horticultural science in order to attract enrolments of more and talented students; and that the horticulture curriculum be continuously evaluated and revised so that it remains relevant to future challenges facing the industries of horticulture in the production, environmental and social spheres. These strategies can be used as a means to develop successful programs and case studies that would provide better information to high school career counsellors, improve the image of horticulture and encourage greater involvement from alumni and the industries in recruitment, provide opportunities to improve career aspirations, ensure improved levels of remuneration, and promote the social features of the profession and greater awareness and recognition of the profession in the wider community. A successful career in horticulture demands intellectual capacities which are capable of drawing knowledge from a wide field of basic sciences, economics and the humanities and integrating this into academic scholarship and practical technologies.