54 resultados para Potential theory (Mathematics).
em CentAUR: Central Archive University of Reading - UK
Resumo:
We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
Traditional derivations of available potential energy, in a variety of contexts, involve combining some form of mass conservation together with energy conservation. This raises the questions of why such constructions are required in the first place, and whether there is some general method of deriving the available potential energy for an arbitrary fluid system. By appealing to the underlying Hamiltonian structure of geophysical fluid dynamics, it becomes clear why energy conservation is not enough, and why other conservation laws such as mass conservation need to be incorporated in order to construct an invariant, known as the pseudoenergy, that is a positive‐definite functional of disturbance quantities. The available potential energy is just the non‐kinetic part of the pseudoenergy, the construction of which follows a well defined algorithm. Two notable features of the available potential energy defined thereby are first, that it is a locally defined quantity, and second, that it is inherently definable at finite amplitude (though one may of course always take the small‐amplitude limit if this is appropriate). The general theory is made concrete by systematic derivations of available potential energy in a number of different contexts. All the well known expressions are recovered, and some new expressions are obtained. The possibility of generalizing the concept of available potential energy to dynamically stable basic flows (as opposed to statically stable basic states) is also discussed.
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
Resumo:
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A ‘range test’ for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533–547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhäuser, Basel, 1986, pp. 93–102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Göttingen, 1999]. In particular, we propose a new version of the Kirsch–Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
Condition number estimates for combined potential boundary integral operators in acoustic scattering
Resumo:
We study the classical combined field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the indirect formulation due to Brakhage-Werner/Leis/Panic, and the direct formulation associated with the names of Burton and Miller. We obtain lower and upper bounds on the condition numbers for these formulations, emphasising dependence on the frequency, the geometry of the scatterer, and the coupling parameter. Of independent interest we also obtain upper and lower bounds on the norms of two oscillatory integral operators, namely the classical acoustic single- and double-layer potential operators.
Resumo:
This paper takes as its starting point recent work on caring for distant others which is one expression of renewed interest in moral geographies. It examines relationships in aid chains connecting donors/carers in the First World or North and recipients/cared for in the Third World or South. Assuming predominance of relationships between strangers and of universalism as a basis for moral motivation I draw upon Gift Theory in order to characterize two basic forms of gift relationship. The first is purely altruistic, the other fully reciprocal and obligatory within the framework of institutions, values and social forces within specific relationships of politics and power. This conception problematizes donor-recipient relationships in the context of two modernist models of aid chains-the Resource Transfer and the Beyond Aid Paradigms. In the first, donor domination means low levels of reciprocity despite rhetoric about partnership and participation. The second identifies potential for greater reciprocity on the basis of combination between social movements and non-governmental organizations at both national and trans-national levels, although at the risk of marginalizing competencies of states. Finally, I evaluate post-structural critiques which also problematize aid chain relationships. They do so both in terms of bases-such as universals and difference-upon which it might be constructed and the means-such as forms of positionality and mutuality-by which it might be achieved.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.