17 resultados para Potential technologies
em CentAUR: Central Archive University of Reading - UK
Resumo:
The terminator gene can render seeds sterile, so forcing farmers to purchase fresh seed every year. It is a technological solution to the problem of market failure that could increase the appropriability of R&D investment more effectively than intellectual property rights legislation or patents. This paper shows that appropriability should be more than tripled and that this leads to greater private R&D investment, which may be expected to double or triple. This would bring open-pollinating varieties into line with F1 hybrids, for which seed cannot be saved. In turn, the increased investment should raise yield increases to levels similar to those for hybrid crops. Thus, there are benefits to set against the possible ecological and environmental costs and the clear distributional and social consequences. The paper discusses the way the seed market is developing, the possible impacts, especially from a developing country viewpoint, and considers the policy changes that are needed.
Resumo:
This paper examines the potential of using Participatory Farm Management methods to examine the suitability of a technology with farmers prior to on-farm trials. A study examining the suitability of green manuring as a technology for use with wet season tomato producers in Ghana is described. Findings from this case-study demonstrate that Participatory Budgeting can be used by farmers and researchers to analyse current cultivation practices, identify the options for including green manures into the system and explore the direct and wider resource implications of the technology. Scored-Causal Diagrams can be used to identify farmers' perceptions of the relative importance of the problem that the technology seeks to address. The use of the methods in this examine evaluation process appears to have the potential to improve the effectiveness and efficiency of the adaptive research process. This ensures that technologies subsequently examined in trials ate relevant to farmers' interests, existing systems and resources, thereby increasing the chances of farmer adoption. It is concluded that this process has potential for use-with other technologies and in other farming systems. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Whilst much is known of new technology adopters, little research has addressed the role of their attitudes in adoption decisions; particularly, for technologies with evident economic potential that have not been taken up by farmers. This paper presents recent research that has used a new approach which examines the role that adopters' attitudes play in identifying the drivers of and barriers to adoption. The study was concerned with technologies for livestock farming systems in SW England, specifically oestrus detection, nitrogen supply management, and, inclusion of white clover. The adoption behaviour is analysed using the social-psychology theory of reasoned action to identify factors that affect the adoption of technologies, which are confirmed using principal components analysis. The results presented here relate to the specific adoption behaviour regarding the Milk Development Council's recommended observation times for heat detection. The factors that affect the adoption of this technology are: cost effectiveness, improved detection and conception rates as the main drivers, whilst the threat to demean the personal knowledge and skills of a farmer in 'knowing' their cows is a barrier. This research shows clearly that promotion of a technology and transfer of knowledge for a farming system need to take account of the beliefs and attitudes of potential adopters. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The entropically-driven ring-opening polymerization of macrocyclic monomers (> ca. 14 ring atoms per repeat unit) and/or macrocyclic oligomers is a relatively new method of polymer synthesis that exploits the well-known phenomenon of ring-chain equilibria. It attracts interest because of its novel features. For example, these ring-opening polymerizations emit no volatiles and little or no heat. This review considers the principles of entropically-driven ring-opening polymerizations, gives selected examples and discusses potential applications. The latter include micromolding, high throughput syntheses and the synthesis of supramolecular polymers. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
Waste biomass contains a multitude of complex carbohydrate molecules. These carbohydrates can be considered as a resource for the development of novel prebiotic oligosaccharides which may have better functionality than those currently established on the market. Enhanced persistence of the prebiotic effect along the colon, antipathogen effects, and more closely targeted prebiotics, might all be possible starting from plant polysaccharides. Of particular interest for the development of novel prebiotics are oligosaccharides from arabinoxylans and pectins. Oligosaccharides derived from the breakdown of both classes have received increased research attention recently. The development of prebiotics based upon biomass will demand the development of new manufacturing technologies.
Resumo:
Increasingly, distributed systems are being used to host all manner of applications. While these platforms provide a relatively cheap and effective means of executing applications, so far there has been little work in developing tools and utilities that can help application developers understand problems with the supporting software, or the executing applications. To fully understand why an application executing on a distributed system is not behaving as would be expected it is important that not only the application, but also the underlying middleware, and the operating system are analysed too, otherwise issues could be missed and certainly overall performance profiling and fault diagnoses would be harder to understand. We believe that one approach to profiling and the analysis of distributed systems and the associated applications is via the plethora of log files generated at runtime. In this paper we report on a system (Slogger), that utilises various emerging Semantic Web technologies to gather the heterogeneous log files generated by the various layers in a distributed system and unify them in common data store. Once unified, the log data can be queried and visualised in order to highlight potential problems or issues that may be occurring in the supporting software or the application itself.
Resumo:
The International Conference (series) on Disability, Virtual Reality and Associated Technologies (ICDVRAT) this year held its sixth biennial conference, celebrating ten years of research and development in this field. A total of 220 papers have been presented at the first six conferences, addressing potential, development, exploration and examination of how these technologies can be applied in disabilities research and practice. The research community is broad and multi-disciplined, comprising a variety of scientific and medical researchers, rehabilitation therapists, educators and practitioners. Likewise, technologies, their applications and target user populations are also broad, ranging from sensors positioned on real world objects to fully immersive interactive simulated environments. A common factor is the desire to identify what the technologies have to offer and how they can provide added value to existing methods of assessment, rehabilitation and support for individuals with disabilities. This paper presents a brief review of the first decade of research and development in the ICDVRAT community, defining technologies, applications and target user populations served.
Resumo:
A person with a moderate or severe motor disability will often use specialised or adapted tools to assist their interaction with a general environment. Such tools can assist with the movement of a person's arms so as to facilitate manipulation, can provide postural supports, or interface to computers, wheelchairs or similar assistive technologies. Designing such devices with programmable stiffness and damping may offer a better means for the person to have effective control of their surroundings. This paper addresses the possibility of designing some assistive technologies using impedance elements that can adapt to the user and the circumstances. Two impedance elements are proposed. The first, based on magnetic particle brakes, allows control of the damping coefficient in a passive element. The second, based on detuning the P-D controller in a servo-motor mechanism, allows control of both stiffness and damping. Such a mechanical impedance can be modulated to the conditions imposed by the task in hand. The limits of linear theory are explored and possible uses of programmable impedance elements are proposed.
Resumo:
Over recent years there has been an increasing deployment of renewable energy generation technologies, particularly large-scale wind farms. As wind farm deployment increases, it is vital to gain a good understanding of how the energy produced is affected by climate variations, over a wide range of time-scales, from short (hours to weeks) to long (months to decades) periods. By relating wind speed at specific sites in the UK to a large-scale climate pattern (the North Atlantic Oscillation or "NAO"), the power generated by a modelled wind turbine under three different NAO states is calculated. It was found that the wind conditions under these NAO states may yield a difference in the mean wind power output of up to 10%. A simple model is used to demonstrate that forecasts of future NAO states can potentially be used to improve month-ahead statistical forecasts of monthly-mean wind power generation. The results confirm that the NAO has a significant impact on the hourly-, daily- and monthly-mean power output distributions from the turbine with important implications for (a) the use of meteorological data (e.g. their relationship to large scale climate patterns) in wind farm site assessment and, (b) the utilisation of seasonal-to-decadal climate forecasts to estimate future wind farm power output. This suggests that further research into the links between large-scale climate variability and wind power generation is both necessary and valuable.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
In this paper, the global market potential of solar thermal, photovoltaic (PV) and combined photovoltaic/thermal (PV/T) technologies in current time and near future was discussed. The concept of the PV/T and the theory behind the PV/T operation were briefly introduced, and standards for evaluating technical, economic and environmental performance of the PV/T systems were addressed. A comprehensive literature review into R&D works and practical application of the PV/T technology was illustrated and the review results were critically analysed in terms of PV/T type and research methodology used. The major features, current status, research focuses and existing difficulties/barriers related to the various types of PV/T were identified. The research methods, including theoretical analyses and computer simulation, experimental and combined experimental/theoretical investigation, demonstration and feasibility study, as well as economic and environmental analyses, applied into the PV/T technology were individually discussed, and the achievement and problems remaining in each research method category were described. Finally, opportunities for further work to carry on PV/T study were identified. The review research indicated that air/water-based PV/T systems are the commonly used technologies but their thermal removal effectiveness is lower. Refrigerant/heat-pipe-based PV/Ts, although still in research/laboratory stage, could achieve much higher solar conversion efficiencies over the air/water-based systems. However, these systems were found a few technical challenges in practice which require further resolutions. The review research suggested that further works could be undertaken to (1) develop new feasible, economic and energy efficient PV/T systems; (2) optimise the structural/geometrical configurations of the existing PV/T systems; (3) study long term dynamic performance of the PV/T systems; (4) demonstrate the PV/T systems in real buildings and conduct the feasibility study; and (5) carry on advanced economic and environmental analyses. This review research helps finding the questions remaining in PV/T technology, identify new research topics/directions to further improve the performance of the PV/T, remove the barriers in PV/T practical application, establish the standards/regulations related to PV/T design and installation, and promote its market penetration throughout the world.
Resumo:
A better understanding of the systemic processes by which innovation occurs is useful, both conceptually and to inform policymaking in support of innovation in more sustainable technologies. This paper analyses current innovation systems in the UK for a range of new and renewable energy technologies, and generates policy recommendations for improving the effectiveness of these innovation systems. Although incentives are in place in the UK to encourage innovation in these technologies, system failures—or ‘gaps’—are identified in moving technologies along the innovation chain, preventing their successful commercialisation. Sustained investment will be needed for these technologies to achieve their potential. It is argued that a stable and consistent policy framework is required to help create the conditions for this. In particular, such a framework should be aimed at improving risk/reward ratios for demonstration and pre-commercial stage technologies. This would enhance positive expectations, stimulate learning effects leading to cost reductions, and increase the likelihood of successful commercialisation.
Resumo:
Sri Lanka's participation rates in higher education are low and have risen only slightly in the last few decades; the number of places for higher education in the state university system only caters for around 3% of the university entrant age cohort. The literature reveals that the highly competitive global knowledge economy increasingly favours workers with high levels of education who are also lifelong learners. This lack of access to higher education for a sizable proportion of the labour force is identified as a severe impediment to Sri Lanka‟s competitiveness in the global knowledge economy. The literature also suggests that Information and Communication Technologies are increasingly relied upon in many contexts in order to deliver flexible learning, to cater especially for the needs of lifelong learners in today‟s higher educational landscape. The government of Sri Lanka invested heavily in ICTs for distance education during the period 2003-2009 in a bid to increase access to higher education; but there has been little research into the impact of this. To address this lack, this study investigated the impact of ICTs on distance education in Sri Lanka with respect to increasing access to higher education. In order to achieve this aim, the research focused on Sri Lanka‟s effort from three perspectives: policy perspective, implementation perspective and user perspective. A multiple case study research using an ethnographic approach was conducted to observe Orange Valley University‟s and Yellow Fields University‟s (pseudonymous) implementation of distance education programmes using questionnaires, qualitative interviewing and document analysis. In total, data for the analysis was collected from 129 questionnaires, 33 individual interviews and 2 group interviews. The research revealed that ICTs have indeed increased opportunities for higher education; but mainly for people of affluent families from the Western Province. Issues identified were categorized under the themes: quality assurance, location, language, digital literacies and access to resources. Recommendations were offered to tackle the identified issues in accordance with the study findings. The study also revealed the strong presence of a multifaceted digital divide in the country. In conclusion, this research has shown that iii although ICT-enabled distance education has the potential to increase access to higher education the present implementation of the system in Sri Lanka has been less than successful.