67 resultados para Potential and tourist use
em CentAUR: Central Archive University of Reading - UK
Resumo:
Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.
Resumo:
The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets d6pends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have notyet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or largescale changes in land use.
Resumo:
This chapter introduces ABMs, their construction, and the pros and cons of their use. Although relatively new, agent-basedmodels (ABMs) have great potential for use in ecotoxicological research – their primary advantage being the realistic simulations that can be constructed and particularly their explicit handling of space and time in simulations. Examples are provided of their use in ecotoxicology primarily exemplified by different implementations of the ALMaSS system. These examples presented demonstrate how multiple stressors, landscape structure, details regarding toxicology, animal behavior, and socioeconomic effects can and should be taken into account when constructing simulations for risk assessment. Like ecological systems, in ABMs the behavior at the system level is not simply the mean of the component responses, but the sum of the often nonlinear interactions between components in the system; hence this modeling approach opens the door to implementing and testing much more realistic and holistic ecotoxicological models than are currently used.
Resumo:
While only about 1-200 species are used intensively in commercial floriculture (e.g. carnations, chrysanthemums, gerbera, narcissus, orchids, tulips, lilies, roses, pansies and violas, saintpaulias, etc.) and 4-500 as house plants, several thousand species of herbs, shrubs and trees are traded commercially by nurseries and garden centres as ornamentals or amenity species. Most of these have been introduced from the wild with little selection or breeding. In Europe alone, 12 000 species are found in cultivation in general garden collections (i.e. excluding specialist collections and botanic gardens). In addition, specialist collections (often very large) of many other species and/or cultivars of groups such as orchids, bromeliads, cacti and succulents, primulas, rhododendrons, conifers and cycads are maintained in several centres such as botanic gardens and specialist nurseries, as are 'national collections' of cultivated species and cultivars in some countries. Specialist growers, both professional and amateur, also maintain collections of plants for cultivation, including, increasingly, native plants. The trade in ornamental and amenity horticulture cannot be fully estimated but runs into many billions of dollars annually and there is considerable potential for further development and the introduction of many new species into the trade. Despite this, most of the collections are ad hoc and no co-ordinated efforts have been made to ensure that adequate germplasm samples of these species are maintained for conservation purposes and few of them are represented at all adequately in seed banks. Few countries have paid much attention to germplasm needs of ornamentals and the Ornamental Plant Germplasm Center in conjunction with the USDA National Plant Germplasm System at The Ohio State University is an exception. Generally there is a serious gap in national and international germplasm strategies, which have tended to focus primarily on food plants and some forage and industrial crops. Adequate arrangements need to be put in place to ensure the long- and medium-term conservation of representative samples of the genetic diversity of ornamental species. The problems of achieving this will be discussed. In addition, a policy for the conservation of old cultivars or 'heritage' varieties of ornamentals needs to be formulated. The considerable potential for introduction of new ornamental species needs to be assessed. Consideration needs to be given to setting up a co-ordinating structure with overall responsibility for the conservation of germplasm of ornamental and amenity plants.
Resumo:
A person with a moderate or severe motor disability will often use specialised or adapted tools to assist their interaction with a general environment. Such tools can assist with the movement of a person's arms so as to facilitate manipulation, can provide postural supports, or interface to computers, wheelchairs or similar assistive technologies. Designing such devices with programmable stiffness and damping may offer a better means for the person to have effective control of their surroundings. This paper addresses the possibility of designing some assistive technologies using impedance elements that can adapt to the user and the circumstances. Two impedance elements are proposed. The first, based on magnetic particle brakes, allows control of the damping coefficient in a passive element. The second, based on detuning the P-D controller in a servo-motor mechanism, allows control of both stiffness and damping. Such a mechanical impedance can be modulated to the conditions imposed by the task in hand. The limits of linear theory are explored and possible uses of programmable impedance elements are proposed.
Resumo:
We present a simple theoretical land-surface classification that can be used to determine the location and temporal behavior of preferential sources of terrestrial dust emissions. The classification also provides information about the likely nature of the sediments, their erodibility and the likelihood that they will generate emissions under given conditions. The scheme is based on the dual notions of geomorphic type and connectivity between geomorphic units. We demonstrate that the scheme can be used to map potential modern-day dust sources in the Chihuahuan Desert, the Lake Eyre Basin and the Taklamakan. Through comparison with observed dust emissions, we show that the scheme provides a reasonable prediction of areas of emission in the Chihuahuan Desert and in the Lake Eyre Basin. The classification is also applied to point source data from the Western Sahara to enable comparison of the relative importance of different land surfaces for dust emissions. We indicate how the scheme could be used to provide an improved characterization of preferential dust sources in global dust-cycle models.
Resumo:
The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.
Resumo:
We report on use of iPads (and other IOS devices) for student fieldwork use and as electronic field notebooks and to promote active. We have used questionnaires and interviews of tutors and students to elicit their views and technology and iPad use for fieldwork. There is some reluctance for academic staff to relinquish paper notebooks for iPad use, whether in the classroom or on fieldwork, as well as use them for observational and measurement purposes. Students too are largely unaware of the potential of iPads for enhancing fieldwork. Apps can be configured for a wide variety of specific uses that make iPads useful for educational as well as social uses. Such abilities should be used to enhance existing practice as well as make new functionality. For example, for disabled students who find it difficult to use conventional note taking. iPads can be used to develop student self-directed learning and for group contributions. The technology becomes part of the students’ personal learning environments as well as at the heart of their knowledge spaces – academic and social. This blurring of boundaries is due to iPads’ usability to cultivate field use, instruction, assessment and feedback processes. iPads can become field microscopes and entries to citizen science and we see the iPad as the main ‘computing’ device for students in the near future. As part of the Bring Your Own Technology/Device (BYOD) the iPad has much to offer although, both staff and students need to be guided in the most effective use for self-directed education via development of Personal Learning Environments. A more student-oriented pedagogy is suggested to correspond to the increasing use of tablet technologies by students
Resumo:
Assessments concerning the effects of climate change, water resource availability and water deprivation in West Africa have not frequently considered the positive contribution to be derived from collecting and reusing water for domestic purposes. Where the originating water is taken from a clean water source and has been used the first time for washing or bathing, this water is commonly called “greywater”. Greywater is a prolific resource that is generated wherever people live. Treated greywater can be used for domestic cleaning, for flushing toilets where appropriate, for washing cars, sometimes for watering kitchen gardens, and for clothes washing prior to rinsing. Therefore, a large theoretical potential exists to increase total water resource availability if greywater were to be widely reused. Locally treated greywater reduces the distribution network requirement, lower construction effort and cost and, wherever possible, minimising the associated carbon footprint. Such locally treated greywater offers significant practical opportunities for increasing the total available water resources at a local level. The reuse of treated greywater is one important action that will help to mitigate the reducing availability of clean water supplies in some areas, and the expected mitigation required in future aligns well with WHO/UNICEF (2012) aspirations. The evaluation of potential opportunities for prioritising greywater systems to support water reuse takes into account the availability of water resources, water use indicators and published estimates in order to understand typical patterns of water demand. The approach supports knowledge acquisition regarding local conditions for enabling capacity building for greywater reuse, the understanding of systems that are most likely to encourage greywater reuse, and practices and future actions to stimulate greywater infrastructure planning, design and implementation. Although reuse might be considered to increase the uncertainty of achieving a specified quality of the water supply, robust methods and technologies are available for local treatment. Resource strategies for greywater reuse have the potential to consistently improve water efficiency and availability in water impoverished and water stressed regions of Ghana and West Africa. Untreated greywater is referred to as “greywater”; treated greywater is referred to as “treated greywater” in this paper.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.