5 resultados para Post-weaning

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pharmacological levels of zinc oxide (ZnO) incorporated into the post-weaning piglet diet reduce the incidence of diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) K88. The mechanism for this is not understood. Here, Intestinal Porcine Epithelial Cells (IPEC) J2 were used as an in vitro model of the porcine intestine. ZnO reduced IPEC J2 viability at concentrations >= 200 mu M, and ETEC adhesion to the host cell was unaffected by ZnO. Characterisation of the metabolism of IPEC J2 cells and ETEC established the effects of ZnO treatment on the metabolic profile of both. Although 100 mu M ZnO did not inhibit growth of either host or pathogen in fully supplemented media, metabolic profiles were significantly altered. Glucose and mannose were essential energy sources for IPEC J2 cells in the presence of ZnO, as the ability to utilise other sources was compromised. The increase in specificity of requirements to support respiration in ETEC was more pronounced, in particular the need for cysteine as a nitrogen source. These findings indicate that ZnO impacts on both host cell and pathogen metabolism and may provide insight into the mechanism for diarrhoea reduction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow–fast continuum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experiment on restricted suckling of crossbred dairy cows was conducted at the Livestock Research Centre, Tanga in northeast Tanzania. Thirty-six Bos taurus (Holstein Friesian and Jersey) x Bos indicus (East African Zebu) cows were allocated alternately as they calved to suckling their calves for either 12 or 24 weeks after calving. Cows grazed improved pastures and were offered 4 kg concentrate daily. Milking occurred twice daily by hand; calves were allowed to suck residual milk for 30 min following each milking. Calves were also allowed access to grazing and were offered a maximum of I kg concentrate daily to 24 weeks of age. Weaning age had no significant effect on lactation milk yield for human consumption, the mean (SE) yield being 1806 (102.0) L and 1705 (129. 1) L for 12- and 24-week weaning, respectively. Cows from the two treatments suffered similar losses of live weight and body condition score during lactation and neither group had returned to the original body condition score 40 weeks following calving. Post-partum anoestrous intervals were prolonged. Although not significant, cows suckling calves to 24 weeks had a mean interval to first oestrus extended by 38 days compared with cows suckling calves to 12 weeks. The mean (SE) daily live weight gains of the calves to 52 weeks were 263 (14.1) g/day and 230 (18.1) g/day for calves weaned at 12 and 24 weeks, respectively, such that 12-month weights were 119 (5.6) kg and 110 (7.3) kg, respectively. Twelve-week-weaned calves consumed more concentrate (p < 0.05) from 13 to 24 weeks than did 24-week weaned calves. Calculation of residual milk consumption removed by calves from birth to 12 weeks indicated that it accounted for 28% of total yield. No benefits in cow and calf performance and welfare were found to justify prolonging the suckling period to 24 weeks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals.Objective To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period.Design Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks).Results Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation.ConclusionThe correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. Objective: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. Design: Piglets (n¼14) were weaned onto either an eggbased or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary 1H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). Results: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. Conclusion: The correlation of urinary 1H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multiplatform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.