16 resultados para Post-feeding Larval Dispersal

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seed quality may be compromised if seeds are harvested before natural dispersal (shedding). It has been shown previously that slow or delayed drying can increase potential quality compared with immediate rapid drying. This study set out to investigate whether or not there is a critical moisture content, below which drying terminates maturation events for seeds harvested after mass maturity but before dispersal. Seeds of foxglove (Digitalis purpurea) in the post-abscission pre-dispersal phase were held at between 15 and 95 % RH for 4 or 8 d, with or without re-hydration to 95 % RH for a further 4 d, before drying to equilibrium at 15 % RH. In addition, dry seeds were primed for 48 h at -1 MPa. Subsequent seed longevity was assessed at 60 % RH and 45 degrees C. Rate of germination and longevity were improved by holding seeds at a wide range of humidities after harvest. Longevity was further improved by re-hydration at 95 % RH. Priming improved the longevity of the seeds dried immediately after harvest, but not of those first held at 95 % RH for 8 d prior to drying. Maturation continued ex planta in these post-abscission, pre-dispersal seeds of D. purpurea dried at 15-80 % RH at a rate correlated positively with RH (cf. ageing of mature seeds). Subsequent re-hydration at 95 % RH enabled a further improvement in quality. Priming seeds initially stored air-dry for 3 months also allowed maturation events to resume. However, once individual seeds within the population had reached maximum longevity, priming had a negative impact on their subsequent survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seed predation by avian and non-avian predators was quantified in the boundaries and cropped areas of cereal fields by presenting known quantities of seed with and without exclusion cages. Predator encounter-rates with the dishes exceeded 99%. Birds removed on average 6.7% seed from the dishes during the seven-day trials compared to 51% by non-avian predators. A comparison was made of the causal factors responsible for predation of Avena fatua, Chenopodium album and Cirsium arvense seeds. A. fatua seeds were preyed most heavily by both avian and non-avian predators. Seed removal by birds was greater in the cropped area than in the field boundary, non-avian predators being generally more active in the field boundary. Seed predation by birds was greater in spring than in any other season, whilst losses to other animals were greater during autumn and winter. Although, birds were not the main seed predators in cereal fields, they may contribute to weed seed depletion, of relevance to reduced-input farming systems where herbicides use is restricted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of the fish parasitic isopod, Ceratothoa oestroides (Risso), on haematological parameters of its cage-cultured sea bass host, Dicentrarchus labrax (L.), were studied. Analyses of blood parameters (cell counts, haemoglobin content and haematocrit) were carried out on parasitized and unparasitized sea bass from a fish farm in Turkey. Parasitized fish had significantly lowered erythrocyte counts, haematocrit and haemoglobin values and significantly increased leucocyte counts. Blood feeding by C. oestroides thus produces a post-haemorrhagic anaemia and the fish appear to mount an immune response to the presence of parasites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenne L. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arbuscular mycorrhizal (AM) fungi have a variety of effects on foliar-feeding insects, with the majority of these being positive, although reports of negative and null effects also exist. Virtually all previous experiments have used mobile insects confined in cages and have studied the effects of one, or at most two, species of mycorrhizae on one species of insect. The purpose of this study was to introduce a greater level of realism into insect-mycorrhizal experiments, by studying the responses of different insect feeding guilds to a variety of AM fungi. We conducted two experiments involving three species of relatively immobile insects (a leaf-mining and two seed-feeding flies) reared in natural conditions on a host (Leucanthemum vulgare). In a field study, natural levels of AM colonization were reduced, while in a phytometer trial, we experimentally colonized host plants with all possible combinations of three known mycorrhizal associates of L. vulgare. In general, AM fungi increased the stature (height and leaf number) and nitrogen content of plants. However, these effects changed through the season and were,dependent on the identity of the fungi in the root system. AM fungi increased host acceptance of all three insects and larval performance of the leaf miner, but these effects were also season- and AM species-dependent. We suggest that the mycorrhizal effect on the performance of the leaf miner is due to fungal-induced changes in host-plant nitrogen content, detected by the adult fly. However, variability in the effect was apparent, because not all AM species increased plant N content. Meanwhile, positive effects of mycorrhizae were found on flower number and flower size, and these appeared to result in enhanced infestation levels by the seed-feeding insects. The results show that AM fungi exhibit ecological specificity, in that different. species have different effects on host-plant growth and chemistry and the performance of foliar-feeding insects. Future studies need to conduct experiments that use ecologically realistic combinations of plants and fungi and allow insects to be reared in natural conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replicate lines of Drosophila melanogaster have been selected for increased resistance against one of two species of parasitoid wasp, Asobara tabida and Leptopilina boulardi. In both cases, it has been shown that an improved ability to mount an immunological defense against the parasitoid's egg is associated with reduced survival when the larvae are reared under conditions of low resource availability and thus high competition. We show here that in both sets of selected lines, lower competitive ability is associated with reduced rates of larval feeding, as measured by the frequency of retractions of the cephalopharyngeal skeleton. This suggests that the same or similar physiological processes are involved in the trade-off between competition and resistance against either parasitoid and shows how the interaction between adaptations for competition and natural enemy resistance may be mediated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cannabinoid type 1 receptor-mediated appetite stimulation by D9tetrahydrocannabinol (D9THC) is well understood. Recently, it has become apparent that non-D9THC phytocannabinoids could also alter feeding patterns. Here, we show definitively that non-D9THC phytocannabinoids stimulate feeding. Twelve male, Lister-Hooded rats were prefed to satiety prior to administration of a standardized cannabis extract or to either of two mixtures of pure phytocannabinoids (extract analogues) comprising the phytocannabinoids present in the same proportions as the standardized extract (one with and one without D9THC). Hourly intake and meal pattern data were recorded and analysed using two-way analysis of variance followed by one-way analysis of variance and Bonferroni post-hoc tests. Administration of both extract analogues significantly increased feeding behaviours over the period of the test. All three agents increased hour-one intake and meal-one size and decreased the latency to feed, although the zero-D9THC extract analogue did so to a lesser degree than the high-D9THC analogue. Furthermore, only the analogue containing D9THC significantly increased meal duration. The data confirm that at least one non-D9THC phytocannabinoid induces feeding pattern changes in rats, although further trials using individual phytocannabinoids are required to fully understand the observed effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species-rich lowland hay meadows are of conservation importance for both plants and invertebrates; however, they have declined in area across Europe as a result of conversion to other land uses and management intensification. The re-creation of these grasslands on ex-arable land provides a valuable approach to increasing the extent and conservation value of this threatened habitat. Over a 3-year period a replicated block design was used to test whether introducing seeds promoted the re-creation of both plant and phytophagous beetle assemblages typical of a target hay meadow. Seeds were harvested from local hay meadows, and applied to experimental plots in the form of either green hay or brush harvesting seeds. Green hay spreading achieved the greatest success in re-creating plant and phytophagous beetle assemblages. While re-creation success increased over time for both taxa, for the phytophagous beetles the greatest increase in re-creation success relative to the establishment year also occurred where green hay was applied. We also considered the phytophagous beetles in terms of functional traits that describe host plant specificity, larval feeding location and dispersal. Phytophagous beetle functional trait composition was most similar to the target hay meadow assemblage where some form of seed addition was used, i.e. hay spreading or brush harvested seeds. This study identified the importance of introducing target plant species as a mechanism to promote the re-creation of phytophagous beetle communities. Seed addition methods (e.g. green hay spreading) are crucial to successful hay meadow re-creation.