10 resultados para Population isolates
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three concentrations of Xenorhabdus nematophila and Xenorhabdus spp., (4x10(5,) 4x10(6,) 4x10(7) cells/ml) were evaluated in the laboratory and in pot experiments to test their antagonistic effects on Fusarium oxysporum f.sp., lycopersici. All concentrations effectively inhibited its growth on agar plates. In soil under greenhouse conditions treatments with each bacterium at 4x10(7) cells/ml reduced the disease incidence of tomato by up to 40.38 and 47.54% respectively and there were significant increases of plant biomass by 198 and 211% respectively. The rhizosphere population of Fusarium oxysporum f.sp., lycopersici was reduced by 97%. The Xenorhabdus spp., was comparatively more effective than X. nematophila.
Resumo:
The level of Pasteuria penetrans spore attachment on juveniles of Meloidogyne javanica, M. incognita and M. arenaria was greater when the nematodes were exposed to spores of a population that had been multiplied on a mixture of these Meloidogyne species than where Pasteuria was multiplied on a single nematode population. When tomato plants were inoculated with M. javanica, M. incognita and M. arenaria juveniles encumbered with spores produced on different Meloidogyne species, tile incidence of root galling and productivity of egg-masses were less, and this was also reflected in increased infection of females of M. javanica, M. incognita and M. arenaria compared to the infection by Pasteuria populations produced on single nematode species and therefore assumed to have a narrower genetic base.
Resumo:
It is becoming increasingly apparent that many pathogen populations, including those of insects, show high levels of genotypic variation. Baculoviruses are known to be highly variable, with isolates collected from the same species in different geographical locations frequently showing genetic variation and differences in their biology. More recent Studies at smaller scales have also shown that virus DNA profiles from individual larvae can show polymorphisms within and between populations of the same species. Here, we investigate the genotypic and phenotypic variation of an insect baculovirus infection within a single insect host. Twenty four genotypically distinct nucleopolyhedrovirus (NPV) variants were isolated from an individual pine beauty moth, Panolis flammea, caterpillar by in vivo cloning techniques. No variant appeared to be dominant in the population. The Pafl NPV variants have been mapped using three restriction endonucleases and shown to contain three hypervariable regions containing insertions of 70-750 bp. Comparison of seven of these variants in an alternative host, Mamestra brassicae, demonstrated that the variants differed significantly in both pathogenicity and speed of kill. The generation and maintenance of pathogen heterogeneity are discussed. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Resumo:
Following a pressure treatment of a clonal Staphylococcus aureus culture with 400 MPa for 30 min, piezotolerant variants were isolated. Among 21 randomly selected survivors, 9 were piezotolerant and all formed small colonies on several agar media. The majority of the isolates showed increased thermotolerance, impaired growth, and reduced antibiotic resistance compared to the wild type. However, several nonpiezotolerant isolates also demonstrated impaired growth and the small-colony phenotype. In agglutination tests for the detection of protein A and fibrinogen, the piezotolerant variants showed weaker agglutination reactions than the wild type and the other isolates. All variants also showed defective production of the typical S. aureus golden color, a characteristic which has previously been linked with virulence. They were also less able to invade intestinal epithelial cells than the wild type. These S. aureus variants showed phenotypic similarities to previously isolated Listeria monocytogenes piezotolerant mutants that contained mutations in ctsR. Because of these similarities, possible alterations in the ctsR hypermutable regions of the S. aureus variants were investigated through amplified fragment length polymorphism analysis. No mutations were identified, and subsequently we sequenced the ctsR and hrcA genes of three representative variants, finding no mutations. This work demonstrates that S. aureus probably possesses a strategy resulting in an abundance of multiple-stressresistant variants within clonal populations. This strategy, however, seems to involve genes and regulatory mechanisms different from those previously reported for L. monocytogenes. We are in the process of identifying these mechanisms.
Resumo:
In a recent study we demonstrated that a high-hydrostatic-pressure-tolerant isolate of Listeria monocytogenes lacks a codon in the class 3 heat shock regulator gene ctsR. This mutation in the region that encodes four consecutive glycines was directly responsible for the observed piezotolerance, increased stress resistance, and reduced virulence. The aim of the present study was to determine whether mutations in ctsR are frequently associated with piezotolerance in L. monocytogenes. Wild-type cultures of L. monocytogenes were therefore exposed to 350 MPa for 20 min, and the piezotolerance of individual surviving isolates was assessed. This rendered 33 isolates with a stable piezotolerant phenotype from a total of 84 survivors. Stable piezotolerant mutants were estimated to be present in the initial wild-type population at frequencies of >10�5. Subsequent sequencing of the ctsR gene of all stable piezotolerant isolates revealed that two-thirds of the strains (i.e., n � 21) had mutations in this gene. The majority of the mutations (16 of 21 strains) consisted of a triplet deletion in the glycine-encoding region of ctsR, identical to what was found in our previous study. Interestingly, 2 of 21 mutants contained a codon insertion in this repeat region. The remaining three stable piezotolerant strains showed a 19-bp insertion in the glycine repeat region, a 16-bp insertion downstream of the glycine repeat area (both leading to frameshifts and a truncated ctsR), and an in-frame 114-bp deletion encoding a drastically shortened carboxy terminus of CtsR. In four instances it was not possible to generate a PCR product. A piezotolerant phenotype could not be linked to mutations in ctsR in 8 of 33 isolates, indicating that other thus-far-unknown mechanisms also lead to stable piezotolerance. The present study highlights the importance of ctsR in piezotolerance and stress tolerance of L. monocytogenes, and it demonstrates that short-sequence repeat regions contribute significantly to the occurrence of a piezotolerant and stress-tolerant subpopulation within L. monocytogenes cultures, thus playing an important role in survival.
Resumo:
Objective: The effect of a single 5 day enrofloxacin treatment on the native Campylobacter coli population in conventionally weaned 5-week-old pigs was investigated. Materials: Twelve pigs were split into two groups of six: one group was treated with a therapeutic dose (15 mg/pig/day) of enrofloxacin and the other remained untreated to act as the control. Campylobacter coli were isolated from faecal samples and tested for ciprofloxacin resistance by measuring MIC values. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene of resistant isolates were identified by sequencing and denaturing HPLC. Levels of enrofloxacin and its primary metabolite ciprofloxacin in the pig faeces were also measured by HPLC. Results: No quinolone-resistant C. coli (n = 867) were detected in any of the pigs prior to treatment, indicating <0.1% resistance in the group. Resistant C. coli were isolated from pigs for up to 35 days after treatment with a therapeutic dose. These resistant C. coli had MIC values of 128 mg/L and 8-16 mg/L for nalidixic acid and ciprofloxacin, respectively, and the same single point mutation causing a Thr-86 to Ile substitution in the QRDR was identified in each. The concentration of enrofloxacin in the pig faeces was 2-4 mug/g faeces for the duration of the 5 day therapeutic treatment and was detected up to 10 days post-treatment. Ciprofloxacin was also measured and peaked at 0.6 mug/g faeces in the treated group. Conclusion: This study provides evidence that a single course of enrofloxacin treatment contributes directly to the emergence and persistence of fluoroquinolone resistance in C. coli.
Resumo:
This study monitored the dynamics and diversity of the human faecal 'Atopobium cluster' over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (6 males and 7 females) aged between 26 and 61 years. Fluorescence in situ hybridization was used to enumerate total (EUB338mix) and 'Atopobium cluster' (ATO291) bacteria, with counts ranging between 1.12 × 1011 and 9.95 × 1011, and 1.03 × 109 and 1.16 × 1011 cells (g dry weight faeces)-1, respectively. The 'Atopobium cluster' population represented 0.2-22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using 'Atopobium cluster'-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as Collinsella aerofaciens, Collinsella intestinalis/Collinsella stercoris, Collinsella tanakaei, Coriobacteriaceae sp. PEAV3-3, Eggerthella lenta, Gordonibacter pamelaeae, Olsenella profusa, Olsenella uli and Paraeggerthella hongkongensis in the DGGE profiles of individuals. Colony PCR was used to identify 'Atopobium cluster' bacteria isolated from faeces (n = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated Collinsella aerofaciens represented the predominant (88 % of isolates) member of the 'Atopobium cluster' found in human faeces, being found in nine individuals. Eggerthella lenta was identified in three individuals (3.6 % of isolates). Isolates of Collinsella tanakaei, an 'Enorma' sp. and representatives of novel species belonging to the 'Atopobium cluster' were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.
Resumo:
BACKGROUND:The Salmonella enterica serovar Derby is frequently isolated from pigs and turkeys whereas serovar Mbandaka is frequently isolated from cattle, chickens and animal feed in the UK. Through comparative genomics, phenomics and mutant construction we previously suggested possible mechanistic reasons why these serovars demonstrate apparently distinct host ranges. Here, we investigate the genetic and phenotypic diversity of these two serovars in the UK. We produce a phylogenetic reconstruction and perform several biochemical assays on isolates of S. Derby and S. Mbandaka acquired from sites across the UK between the years 2000 and 2010. RESULTS:We show that UK isolates of S. Mbandaka comprise of one clonal lineage which is adapted to proficient utilisation of metabolites found in soya beans under ambient conditions. We also show that this clonal lineage forms a biofilm at 25 °C, suggesting that this serovar maybe well adapted to survival ex vivo, growing in animal feed. Conversely, we show that S. Derby is made of two distinct lineages, L1 and L2. These lineages differ genotypically and phenotypically, being divided by the presence and absence of SPI-23 and the ability to more proficiently invade porcine jejunum derived cell line IPEC-J2. CONCLUSION:The results of this study lend support to the hypothesis that the differences in host ranges of S. Derby and S. Mbandaka are adaptations to pathogenesis, environmental persistence, as well as utilisation of metabolites abundant in their respective host environments.
Resumo:
BACKGROUND: Succinate dehydrogenase inhibitor fungicides are important in the management of Zymoseptoria tritici in wheat. New active ingredients from this group of fungicides have been introduced recently and are widely used. Because the fungicides act at a single enzyme site, resistance development in Z. tritici is classified as medium-to-high risk. RESULTS: Isolates from Irish experimental plots in 2015 were tested against the SDHI penthiopyrad during routine monitoring. The median of the population was approximately 2 x less sensitive than the median of the baseline population. Two of the 93 isolates were much less sensitive to penthiopyrad than least sensitive of the baseline isolates. These isolates were also insensitive to most of commercially available SDHIs. Analysis of the succinate dehydrogenase coding genes confirmed the presence of the substitutions SdhC-H152R and SdhD-R47W in the very insensitive isolates. CONCLUSION: This is the first report showing that the SdhC-H152R mutation detected in laboratory mutagenesis studies also exists in the field. The function and relevance of this mutation, combined with SdhD-R47W, still needs to be determined.