23 resultados para Population biology

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An example of the evolution of the interacting behaviours of parents and progeny is studied using iterative equations linking the frequencies of the gametes produced by the progeny to the frequencies of the gametes in the parental generation. This population genetics approach shows that a model in which both behaviours are determined by a single locus can lead to a stable equilibrium in which the two behaviours continue to segregate. A model in which the behaviours are determined by genes at two separate loci leads eventually to fixation of the alleles at both loci but this can take many generations of selection. Models of the type described in this paper will be needed to understand the evolution of complex behaviour when genomic or experimental information is available about the genetic determinants of behaviour and the selective values of different genomes. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stephens and Donnelly have introduced a simple yet powerful importance sampling scheme for computing the likelihood in population genetic models. Fundamental to the method is an approximation to the conditional probability of the allelic type of an additional gene, given those currently in the sample. As noted by Li and Stephens, the product of these conditional probabilities for a sequence of draws that gives the frequency of allelic types in a sample is an approximation to the likelihood, and can be used directly in inference. The aim of this note is to demonstrate the high level of accuracy of "product of approximate conditionals" (PAC) likelihood when used with microsatellite data. Results obtained on simulated microsatellite data show that this strategy leads to a negligible bias over a wide range of the scaled mutation parameter theta. Furthermore, the sampling variance of likelihood estimates as well as the computation time are lower than that obtained with importance sampling on the whole range of theta. It follows that this approach represents an efficient substitute to IS algorithms in computer intensive (e.g. MCMC) inference methods in population genetics. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AC microsatellites have proved particularly useful as genetic markers. For some purposes, such as in population biology, the inferences drawn depend on the quantitative values of their mutation rates. This, together with intrinsic biological interest, has led to widespread study of microsatellite mutational mechanisms. Now, however, inconsistencies are appearing in the results of marker-based versus non-marker-based studies of mutational mechanisms. The reasons for this have not been investigated, but one possibility, pursued here, is that the differences result from structural differences between markers and genomic microsatellites. Here we report a comparison between the CEPH AC marker microsatellites and the global population of AC microsatellites in the human genome. AC marker microsatellites are longer than the global average. Controlling for length, marker microsatellites contain on average fewer interruptions, and have longer segments, than their genomic counterparts. Related to this, marker microsatellites show a greater tendency to concentrate the majority of their repeats into one segment. These differences plausibly result from scientists selecting markers for their high polymorphism. In addition to the structural differences, there are differences in the base composition of flanking sequences, marker flanking regions being richer in C and G and poorer in A and T. Our results indicate that there are profound differences between marker and genomic microsatellites that almost certainly affect their mutation rates. There is a need for a unified model of mutational mechanisms that accounts for both marker-derived and genomic observations. A suggestion is made as to how this might be done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Without the top-down effects and the external/physical forcing, a stable coexistence of two phytoplankton species under a single resource is impossible — a result well known from the principle of competitive exclusion. Here I demonstrate by analysis of a mathematical model that such a stable coexistence in a homogeneous media without any external factor would be possible, at least theoretically, provided (i) one of the two species is toxin producing thereby has an allelopathic effect on the other, and (ii) the allelopathic effect exceeds a critical level. The threshold level of allelopathy required for the coexistence has been derived analytically in terms of the parameters associated with the resource competition and the nutrient recycling. That the extra mortality of a competitor driven by allelopathy of a toxic species gives a positive feed back to the algal growth process through the recycling is explained. And that this positive feed back plays a pivotal role in reducing competition pressures and helping species succession in the two-species model is demonstrated. Based on these specific coexistence results, I introduce and explain theoretically the allelopathic effect of a toxic species as a ‘pseudo-mixotrophy’—a mechanism of ‘if you cannot beat them or eat them, just kill them by chemical weapons’. The impact of this mechanism of species succession by pseudo-mixotrophy in the form of alleopathy is discussed in the context of current understanding on straight mixotrophy and resource-species relationship among phytoplankton species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Observations on clumps of Phascum cuspidatum during the summer and autumn indicated that this species is at least a short-lived perennial, as young shoots develop from old, brown shoots persisting from the previous winter. No young shoots arising by vegetative propagation were recorded in Pottia truncata. Rhizoid tubers were observed in this species, but only in one of the many clumps examined. Spores of both species germinated freely in culture, but when spores were planted in the field young gametophytes developed inconsistently in P. truncata and never in P. cuspidatum. An investigation of spore deposition around an isolated clump of P. truncata suggested that 67% of the spores released were deposited within the clump, and 70% within 2m. Electrophoretic studies indicated limited genetic variation within two populations of each species, with no genotypes in common between the populations. No genetic variation was recorded between gametophytes within individual clumps of either species, nor between sporophytes and their maternal gametophytes, suggesting a high incidence of inbreeding in these monoecious mosses. (author abst.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subcellular fractionation techniques were used to describe temporal changes (at intervals from T0 to T70 days) in the Pb, Zn and P partitioning profiles of Lumbricus rubellus populations from one calcareous (MDH) and one acidic (MCS) geographically isolated Pb/Zn-mine sites and one reference site (CPF). MDH and MCS individuals were laboratory maintained on their native field soils; CPF worms were exposed to both MDH and MCS soils. Site-specific differences in metal partitioning were found: notably, the putatively metal-adapted populations, MDH and MCS, preferentially partitioned higher proportions of their accumulated tissue metal burdens into insoluble CaPO4-rich organelles compared with naive counterparts, CPF. Thus, it is plausible that efficient metal immobilization is a phenotypic trait characterising metal tolerant ecotypes. Mitochondrial cytochrome oxidase II (COII) genotyping revealed that the populations indigenous to mine and reference soils belong to distinct genetic lineages, differentiated by 13%, with 7 haplotypes within the reference site lineage but fewer (3 and 4, respectively) in the lineage common to the two mine sites. Collectively, these observations raise the possibility that site-related genotype differences could influence the toxico-availability of metals and, thus, represent a potential confounding variable in field-based eco-toxicological assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N-el = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1,6% loss per generation; N-ev = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species, We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inferring population admixture from genetic data and quantifying it is a difficult but crucial task in evolutionary and conservation biology. Unfortunately state-of-the-art probabilistic approaches are computationally demanding. Effectively exploiting the computational power of modern multiprocessor systems can thus have a positive impact to Monte Carlo-based simulation of admixture modeling. A novel parallel approach is briefly described and promising results on its message passing interface (MPI)-based C implementation are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis. Conclusion: Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential reproductive value of arbuscular mycorrhizal fungi (Gloinus intraradices and Glomus invermaium), root pathogenic fungi (Rhizoctonia solani and Fusarium culmorum) and saprotrophic fungi (Penicillium hordei and Trichoderma harzianum) were examined for the collembolans Folsomia candida Willem and Folsomia fimetaria L. Dried baker's yeast (Saccharomyces cerevisiae) was used as a reference standard food in laboratory cultures. Collembolan performance was determined as final size, fecundity and population growth rate after when fed the fungal food sources for 31 days. The mycorrhizal fungi gave the least growth and fecundity compared with the other fungi, but G. intraradices gave good fecundity for F. candida. In terms of growth, Baker's yeast was a high-quality food for both adults and juveniles of both species, but it was a poorer food in terms of fecundity of F. candida. Preference of the fungi in all possible pairwise combinations showed that although F. fimetaria did not perform well on Glomus spp. and F. candida did not grow well on Glomus spp. their preference for these fungi did not reflect this. The highest fecundity was seen with the root pathogen F. culmorum. Different quality indicators such as the C:N ratio of the fungal food sources as well as other biological parameters are discussed in relation to their reproductive value and Collembola preferential feeding. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Population growth rate (PGR) is central to the theory of population ecology and is crucial for projecting population trends in conservation biology, pest management and wildlife harvesting. Furthermore, PGR is increasingly used to assess the effects of stressors. Image analysis that can automatically count and measure photographed individuals offers a potential methodology for estimating PGR. 2. This study evaluated two ways in which the PGR of Daphnia magna, exposed to different stressors, can be estimated using an image analysis system. The first method estimated PGR as the ratio of counts of individuals obtained at two different times, while the second method estimated PGR as the ratio of population sizes at two different times, where size is measured by the sum of the individuals' surface areas, i.e. total population surface area. This method is attractive if surface area is correlated with reproductive value (RV), as it is for D. magna, because of the theoretical result that PGR is the rate at which the population RV increases. 3. The image analysis system proved reliable and reproducible in counting populations of up to 440 individuals in 5 L of water. Image counts correlated well with manual counts but with a systematic underestimate of about 30%. This does not affect accuracy when estimating PGR as the ratio of two counts. Area estimates of PGR correlated well with count estimates, but were systematically higher, possibly reflecting their greater accuracy in the study situation. 4. Analysis of relevant scenarios suggested the correlation between RV and body size will generally be good for organisms in which fecundity correlates with body size. In these circumstances, area estimation of PGR is theoretically better than count estimation. 5. Synthesis and applications. There are both theoretical and practical advantages to area estimation of population growth rate when individuals' reproductive values are consistently well correlated with their surface areas. Because stressors may affect both the number and quality of individuals, area estimation of population growth rate should improve the accuracy of predicting stress impacts at the population level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is becoming increasingly apparent that many pathogen populations, including those of insects, show high levels of genotypic variation. Baculoviruses are known to be highly variable, with isolates collected from the same species in different geographical locations frequently showing genetic variation and differences in their biology. More recent Studies at smaller scales have also shown that virus DNA profiles from individual larvae can show polymorphisms within and between populations of the same species. Here, we investigate the genotypic and phenotypic variation of an insect baculovirus infection within a single insect host. Twenty four genotypically distinct nucleopolyhedrovirus (NPV) variants were isolated from an individual pine beauty moth, Panolis flammea, caterpillar by in vivo cloning techniques. No variant appeared to be dominant in the population. The Pafl NPV variants have been mapped using three restriction endonucleases and shown to contain three hypervariable regions containing insertions of 70-750 bp. Comparison of seven of these variants in an alternative host, Mamestra brassicae, demonstrated that the variants differed significantly in both pathogenicity and speed of kill. The generation and maintenance of pathogen heterogeneity are discussed. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviour-based models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley's declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.