5 resultados para Population Divergence
em CentAUR: Central Archive University of Reading - UK
Resumo:
Flowering time and seed size are traits related to domestication. However, identification of domestication-related loci/genes of controlling the traits in soybean is rarely reported. In this study, we identified a total of 48 domestication-related loci based on RAD-seq genotyping of a natural population comprising 286 accessions. Among these, four on chromosome 12 and additional two on chromosomes 11 and 15 were associated with flowering time, and four on chromosomes 11 and 16 were associated with seed size. Of the five genes associated with flowering time and the three genes associated with seed size, three genes Glyma11g18720, Glyma11g15480 and Glyma15g35080 were homologous to Arabidopsis genes, additional five genes were found for the first time to be associated with these two traits. Glyma11g18720 and Glyma05g28130 were co-expressed with five genes homologous to flowering time genes in Arabidopsis, and Glyma11g15480 was co-expressed with 24 genes homologous to seed development genes in Arabidopsis. This study indicates that integration of population divergence analysis, genome-wide association study and expression analysis is an efficient approach to identify candidate domestication-related genes.
Resumo:
We examine the extent of population-level differentiation in life history traits of Pogonatum aloides, Polytrichum commune and Polytrichum juniperinum (Polytrichaceae) between upland and lowland localities within Britain. Reciprocal transplant studies are used to estimate the relative importance of genetic versus environmental effects on observed differences. We demonstrate significant life history differentiation between moss populations, and show that at least some of these are genetically determined, although environment and phenotypic plasticity are also significant components of the observed variation. The transplant experiments indicate divergence among populations in plasticity of male reproductive effort and of investment in vegetative shoots by females. Two tradeoffs are identified; one between the number and the size of spores, and the second between reproduction by spores versus vegetative reproduction. The patterns of life history variation observed between populations of Polytrichum juniperinum are consistent with selection along these implied tradeoff curves, and we propose that they reflect selective pressures arising from the spatial and demographic distribution of mortality at upland versus lowland sites. The results underscore the need for more studies of intra-specific life history variation in mosses.
Resumo:
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F-ST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F-ST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F-ST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
Resumo:
Pseudovivipary is an environmentally induced flowering abnormality in which vegetative shoots replace seminiferous (sexual) inflorescences. Pseudovivipary is usually retained in transplantation experiments, indicating that the trait is not solely induced by the growing environment. Pseudovivipary is the defining characteristic of Festuca vivipara, and arguably the only feature separating this species from its closest seminiferous relative, Festuca ovina. We performed phylogenetic and population genetic analysis on sympatric F. ovina and F. vivipara samples to establish whether pseudovivipary is an adaptive trait that accurately defines the separation of genetically distinct Festuca species. Chloroplast and nuclear marker-based analyses revealed that variation at a geographical level can exceed that between F. vivipara and F. ovina. We deduced that F. vivipara is a recent species that frequently arises independently within F. ovina populations and has not accumulated significant genetic differentiation from its progenitor. We inferred local gene flow between the species. We identified one amplified fragment length polymorphism marker that may be linked to a pseudovivipary-related region of the genome, and several other markers provide evidence of regional local adaptation in Festuca populations. We conclude that F. vivipara can only be appropriately recognized as a morphologically and ecologically distinct species; it lacks genetic differentiation from its relatives. This is the first report of a ‘failure in normal flowering development’ that repeatedly appears to be adaptive, such that the trait responsible for species recognition constantly reappears on a local basis.