41 resultados para Population Density

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the causal mechanisms promoting group formation in carnivores has been widely investigated, particularly how fitness components affect group formation. Population density may affect the relative benefits of natal philopatry versus dispersal. Density effects on individual behavioral strategies have previously been studied through comparisons of different populations, where differences could be confounded by between-site effects. We used a single population of red foxes (Vulpes vulpes) in the city of Bristol, UK, that underwent a natural perturbation in density to compare key changes in 1) group structure, 2) within-group relatedness, 3) mating system, 4) dispersal, and 5) dominance attainment. At high densities (19.6-27.6 adults km(-2)), group sex ratios were equal and included related and unrelated individuals. At low densities (4.0-5.5 adults km(-2)), groups became female biased and were structured around philopatric females. However, levels of within-group relatedness were unchanged. The genetic mating patterns changed with no instances of multiple-paternity litters and a decline in the frequency of extrapair litters of cubs from <= 77% to <= 38%. However, the number of genetically monogynous groups did not differ between periods. Dispersal was male biased at both high and low densities. At high density, most dominant males in the study groups appeared to have gained dominance after dispersing, but natal philopatry was an equally successful strategy at low density; conversely, most dominant females were philopatric individuals at both high and low densities. These results illustrate how density may alter behavioral strategies such as mating patterns and how this, in turn, alters group structure in a single population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very few studies have analyzed the dependence of population growth rate on population density, and even fewer have considered interaction effects of density and other stresses, such as exposure to toxic chemicals. Yet without such studies we cannot know whether chemicals harmful at low density have effects on carrying capacity or, conversely, whether chemicals reducing carrying capacity are also harmful at low density, impeding a population's capacity to recover from disturbance. This study examines the combined effects of population density and a toxicant (fluoranthene) on population growth rate (pgr) and carrying capacity using the deposit-feeding polychaete Capitella sp. I as a test organism. Populations were initiated with a stable age distribution, and population density and age/size distribution were followed during a period of 28 wk. Fluoranthene (FLU), population density, and their interaction influenced population growth rate. Population growth rate declined linearly with the logarithm of population biomass, but the slope of the relationship was steeper for the control populations than for populations exposed to 50 mug FLU/(g sediment dry mass). Populations exposed to 150 mug FLU/(g sediment dry mass) went extinct after 8 wk of exposure. Despite concerns that toxicant effects would be exacerbated at high density, we found the reverse to be the case, and effects of fluoranthene on population growth rate were much reduced in the region of carrying capacity. Fluoranthene did. reduce carrying capacity by 46%, and this could haven important implications for interacting species and/or sediment biogeochemical processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of previous laboratory studies suggest that high population density often buffers the effects of chemical stressors that predominately increase mortality. Mortality stressors act to release more resources for the survivors and, therefore, produce less-than-additive effects. By contrast, growth stressors are expected to have opposite results or more-than-additive effects. We investigated the effects of a growth inhibitor (lufenuron) on larval growth and survival of Chironomus riparius and examined its joint effects with density on population growth rate (PGR). Exposure to 60 mu g/kg sediment or greater inhibited larval growth, and exposure to 88 mu g/kg or greater often resulted in mortality before reaching emergence. The effects of lufenuron, however, differed with population density. At 88 mu g/kg, mortalities and, to a lesser extent, reduced fecundity resulted in a reduction in PGR at low density. Conversely, when populations were initiated at high density, PGR was similar to that of controls, because the few survivors reached maturity sooner and started producing offspring earlier. The effect of density as a growth stressor therefore was stronger than the effect of lufenuron, which had effects similar to those of a mortality stressor and produced less-than-additive effects. Longterm studies under field conditions, however, are needed before less-than-additive effects are considered to be the norm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Chemical effects on organisms are typically assessed using individual-level endpoints or sometimes population growth rate (PGR), but such measurements are generally made at low population densities. In contrast most natural populations are subject to density dependence and fluctuate around the environmental carrying capacity as a result of individual competition for resources. As ecotoxicology aims to make reliable population projections of chemical impacts in the field, an understanding of how high-density or resource-limited populations respond to environmental chemicals is essential. 2. Our objective was to determine the joint effects of population density and chemical stress on the life history and PGR of an important ecotoxicological indicator species, Chironomus riparius, under controlled laboratory conditions. Populations were fed the same ration but initiated at different densities and exposed to a solvent control and three concentrations of C-14-cypermethrin in a sediment-water test system for 67 days at 20 +/- 1 degreesC. 3. Density had a negative effect on all the measured life-history traits, and PGR declined with increasing density in the controls. Exposure to C-14-cypermethrin had a direct negative effect on juvenile survival, presumably within the first 24 h because the chemical rapidly dissipated from the water column. Reductions in the initial larval densities resulted in an increase in the available resources for the survivors. Subsequently, exposed populations emerged sooner and started producing offspring earlier than the controls. C-14-cypermethrin had no effect on estimated fecundity and adult body weight but interacted with density to reduce the time to first emergence and first reproduction. As a result, PGR increased with cypermethrin concentration when populations were initiated at high densities. 4. Synthesis and applications. The results showed that the effects of C-14-cypermethrin were buffered at high density, so that the joint effects of density and chemical stress on PGR were less than additive. Low levels of chemical stressors may increase carrying capacity by reducing juvenile competition for resources. More and perhaps fitter adults may be produced, similar to the effects of predators and culling; however, toxicant exposure may result in survivors that are less tolerant to changing conditions. If less than additive effects are typical in the field, standard regulatory tests carried out at low density may overestimate the effects of environmental chemicals. Further studies over a wide range of chemical stressors and organisms with contrasting life histories are needed to make general recommendations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite long-standing interest in the forms and mechanisms of density dependence, these are still imperfectly understood. However, in a constant environment an increase in density must reduce per capita resource availability, which in turn leads to reduced survival, fecundity and somatic growth rate. Here we report two population experiments examining the density dependent responses under controlled conditions of an important indicator species, Chironomus riparius. The first experiment was run for 35 weeks and was started at low density with replicate populations being fed three different rations. Increased ration reduced generation time and increased population growth rate (pgr) but had no effect on survival, fecundity and female body weight in the first generation. In the second generation there was a six-fold increase in generation time, presumably due to the greatly reduced per capita resource availability as the estimated initial densities of the second generation were 300 times greater than the first. Juvenile survival to emergence, fecundity, adult body weight and pgr declined by 90%, 75%, 35% and 99%, respectively. These large between-generation effects may have obscured the effects of the threefold variation in ration, as only survival to emergence significantly increased with ration in the second generation. These results suggest that some chironomid larvae survive a reduction in resource availability by growing more slowly. In the ephemeral habitats sometimes occupied by C. riparius, the effects of population density may depend crucially on the longevity of the environment. A second experiment was therefore performed to measure pgr from six different starting densities over an eight-week period. The relationship between pgr and density was concave, viewed from above. At densities above 16 larvae per cm(2), less than 1% of the population emerged and no offspring were produced. Under the conditions of experiment 2 - an 8-week habitat lifespan carrying capacity was estimated as 8 larvae per cm(2).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variations in demographic rates due to differential resource allocation between individuals are important considerations in the development of accurate population dynamic models. Systematic harvesting can alter age structure and/or reduce population density, conferring indirect positive benefits on the source population as a result of a consequent redistribution of resources between the remaining individuals. Independently of effects mediated through changes in density and competition, demographic rates can also be influenced by within-individual competition for resources. Harvesting dependent life stages can reduce an individual's current reproductive costs, allowing increased investment in its future fecundity and survival. Although such changes in demographic rates are well known, there has been little exploration of the potential impact on population dynamics. We use empirical data collected from a successfully reintroduced population of the Mauritius kestrel Falco punctatus to explore the population consequences of manipulating reproductive effort through harvesting. Consequent increases in an individual's future fecundity and survival allow source populations to withstand longer and more intensive harvesting regimes without being exposed to an increase in extinction risk, increasing maximum sustainable yields. These effects may also buffer populations against the impacts of stochastic events, but directional shifts in environmental conditions that increase reproductive costs may have detrimental population-level effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Disease epizootics can significantly influence host population dynamics and the structure and functioning of ecological communities. Sarcoptic mange Sarcoptes scabiei has dramatically reduced red fox populations Vulpes vulpes in several countries, including Britain, although impacts on demographic processes are poorly understood. We review the literature on the impact of mange on red fox populations, assess its current distribution in Britain through a questionnaire survey and present new data on resultant demographic changes in foxes in Bristol, UK. 2. A mange epizootic in Sweden spread across the entire country in < 10 years resulting in a decline in fox density of up to 95%; density remained lowered for 15–20 years. In Spain, mange has been enzootic for > 75 years and is widely distributed; mange presence was negatively correlated with habitat quality. 3. Localized outbreaks have occurred sporadically in Britain during the last 100 years. The most recent large-scale outbreak arose in the 1990s, although mange has been present in south London and surrounding environs since the 1940s. The questionnaire survey indicated that mange was broadly distributed across Britain, but areas of perceived high prevalence (> 50% affected) were mainly in central and southern England. Habitat type did not significantly affect the presence/absence of mange or perceived prevalence rates. Subjective assessments suggested that populations take 15–20 years to recover. 4. Mange appeared in Bristol's foxes in 1994. During the epizootic phase (1994–95), mange spread through the city at a rate of 0.6–0.9 km/month, with a rise in infection in domestic dogs Canis familiaris c. 1–2 months later. Juvenile and adult fox mortality increased and the proportion of females that reproduced declined but litter size was unaffected. Population density declined by > 95%. 5. In the enzootic phase (1996–present), mange was the most significant mortality factor. Juvenile mortality was significantly higher than in the pre-mange period, and the number of juveniles classified as dispersers declined. Mange infection reduced the reproductive potential of males and females: females with advanced mange did not breed; severely infected males failed to undergo spermatogenesis. In 2004, Bristol fox population density was only 15% of that in 1994.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forecasting the effects of stressors on the dynamics of natural populations requires assessment of the joint effects of a stressor and population density on the population response. The effects can be depicted as a contour map in which the population response, here assessed by Population growth rate, varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. We present the first complete map of this type using as our model Folsomia candida exposed to five different concentrations of the widespread anthelmintic veterinary medicine ivermectin in replicated microcosm experiments lasting 49 days. The concentrations of ivermectin in yeast were 0.0, 6.8 28.83 66.4 and 210.0 mg/L wet weight. Increasing density and chemical concentration both significantly reduced the population growth rate of Folsomia candida, in part through effects on food consumption and fecundity. The interaction between density and ivermectin concentration was "less-than-additive," implying that at high density populations were able to compensate for the effects of the chemical. This result demonstrates that regulatory protocols carried out at low density (as in most past experiments) may seriously overestimate effects in the field, where densities are locally high and populations are resource limited (e.g., in feces of livestock treated with ivermectin).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviour-based models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley's declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.