3 resultados para Polyhedra

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancins are a class of metalloproteases found in some baculoviruses that enhance viral infection by degrading the peritrophic, membrane (PM) of the insect midgut. However, sequencing has revealed enhancin-like genes with 24-25% homology to viral enhancins, in the genomes of Yersinia pestis and Bacillus anthracis. AcMNPV does not encode enhancin therefore recombinant AcMNPV budded viruses (BVs) and polyhedra inclusion bodies (PIBs) were generated expressing the bacterial Enhancins. Bacterial Enhancins were found to be cytotoxic when compared to viral enhancin, however, larval bioassays suggested that the bacterial Enhancins did not enhance infection in the same way as viral Enhancin. This suggests that the bacterial Enhancins may have evolved a distinct biochemical function. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first 3-D open-framework TiGaPO complex, constructed from (TiO6)-O-III, (TiO6)-O-IV, GaO4, and PO4 polyhedra, contains pyridinium cations in a 1-D pore network and can be oxidized in air at 543 K with retention of the original framework structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces.