10 resultados para Point cloud processing
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
The identification, tracking, and statistical analysis of tropical convective complexes using satellite imagery is explored in the context of identifying feature points suitable for tracking. The feature points are determined based on the shape of complexes using the distance transform technique. This approach has been applied to the determination feature points for tropical convective complexes identified in a time series of global cloud imagery. The feature points are used to track the complexes, and from the tracks statistical diagnostic fields are computed. This approach allows the nature and distribution of organized deep convection in the Tropics to be explored.
Resumo:
Flake breakage and texture are important quality, criteria in oat flakes. These properties are determined by the mechanical properties of the flakes, which may be influenced by process variables such as kilning and flake thickness. A pin deformation method was used to measure the rupture force of individual oat flakes at different water activities. The monolayer value of ground oat flakes ranged from 5.83 to 684 g/100 g dry matter Thick flakes were strongest, requiring 3.4 N to rupture the flake compared to 2.2 N for the thin flakes. Water softened the flakes, causing a decrease in rupture force from 3.6 N to 2.4 N as water activity; increased from 0.115 to 0.848. Kilning had a significant effect on flake thickness but not on the mechanical properties. This study suggests that oat flakes should be stored at water activity 0.4 or less as there is a sharp loss of flake strength above this point.
Resumo:
Objective: Previous research has indicated that temporal factors [specifically, the duration of interstimulus intervals (ISI) during a threat processing task] may influence the nature of processing biases exhibited in nonclinical populations with some degree of eating disorder psychopathology (Meyer et al., Int J Eat Disord, 27, 405-410, 2000). The current study aimed to test this hypothesis by investigating attentional biases for eating-disorder-relevant images and irrelevant visual images (animals) in patients with eating disorders (n = 23) and psychiatric (n = 19) and nonpsychiatric (n = 65) controls. Method: A dot probe task was modified from previous research (Shafran et al., Int Eat Disord, 40, 369-380, 2007), whereby an original ISI of 500 ms was increased to 2.000 ms. Results: Patients with an eating disorder continued to display a bias in the processing of weight stimuli. However, biases noted in previous research for shape and weight stimuli disappeared when the ISI duration was increased in this way. Conclusion: These findings highlight the importance of temporal factors in whether processing biases are displayed and may point to ways in which biases actually work in this population. However, further research is warranted. (C) 2008 by Wiley Periodicals, Inc.
Resumo:
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10∘). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90∘. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.
Resumo:
Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.
Resumo:
Galactic Cosmic Rays are one of the major sources of ion production in the troposphere and stratosphere. Recent studies have shown that ions form electrically charged clusters which may grow to become cloud droplets. Aerosol particles charge by the attachment of ions and electrons. The collision efficiency between a particle and a water droplet increases, if the particle is electrically charged, and thus aerosol-cloud interactions can be enhanced. Because these microphysical processes may change radiative properties of cloud and impact Earth's climate it is important to evaluate these processes' quantitative effects. Five different models developed independently have been coupled to investigate this. The first model estimates cloud height from dew point temperature and the temperature profile. The second model simulates the cloud droplet growth from aerosol particles using the cloud parcel concept. In the third model, the scavenging rate of the aerosol particles is calculated using the collision efficiency between charged particles and droplets. The fourth model calculates electric field and charge distribution on water droplets and aerosols within cloud. The fifth model simulates the global electric circuit (GEC), which computes the conductivity and ionic concentration in the atmosphere in altitude range 0–45 km. The first four models are initially coupled to calculate the height of cloud, boundary condition of cloud, followed by growth of droplets, charge distribution calculation on aerosols and cloud droplets and finally scavenging. These models are incorporated with the GEC model. The simulations are verified with experimental data of charged aerosol for various altitudes. Our calculations showed an effect of aerosol charging on the CCN concentration within the cloud, due to charging of aerosols increase the scavenging of particles in the size range 0.1 µm to 1 µm.
Resumo:
Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.
Resumo:
The present study compares the impact of thermal and high pressure high temperature(HPHT) processing on volatile profile (via a non-targeted headspace fingerprinting) and structural and nutritional quality parameter (via targeted approaches) of orange and yellow carrot purees. The effect of oil enrichment was also considered. Since oil enrichment affects compounds volatility, the effect of oil was not studied when comparing the volatile fraction. For the targeted part, as yellow carrot purees were shown to contain a very low amount of carotenoids, focus was given to orange carrot purees. The results of the non-targeted approach demonstrated HPHT processing exerts a distinct effect on the volatile fractions compared to thermal processing. In addition, different colored carrot varieties are characterized by distinct headspace fingerprints. From a structural point of view, limited or no difference could be observed between orange carrot purees treated with HPHT or HT processes, both for samples without and with oil. From nutritional point of view, only in samples with oil, significant isomerisation of all-trans-β-carotene occurred due to both processing. Overall, for this type of product and for the selected conditions, HPHT processing seems to have a different impact on the volatile profile but rather similar impact on the structural and nutritional attributes compared to thermal processing.