4 resultados para Plumb
em CentAUR: Central Archive University of Reading - UK
Resumo:
The influence on the summer flow over Asia of both the orographic and thermal forcing of the Tibetan Plateau is investigated using a sequence of idealised experiments with a global primitive equation model. The zonally averaged flow is prescribed and both realistic and idealised orography and heating are used. There is some similarity between the responses to the two forcings when applied separately. The upper tropospheric Tibetan anticyclone is predominantly forced by the heating but also weakly by the orography. Below this, both forcings tend to give air descending in an equatorward anticyclonic circulation down the isentropes to the west and rising in a similar poleward circulation to the east. However the heating-only response has a strong ascending southwesterly flow that is guided around the south and south-east of the orography when it is included. On the northern side, the westerly flow over the orography gives ascent on the upslope and descent on the downslope. It is found that heating over the Plateau leads to a potential vorticity (PV) minimum and that if it is sufficiently strong the flow is unstable, producing a quasi-biweekly oscillation. During this oscillation the Tibetan anticyclone changes between a single centre over the southwestern side of the Plateau and a split/double structure with centres over China and the Middle East. These characteristics are similar to observed variability in the region. Associated with this quasi-biweekly oscillation are significant variations in the strength of the ascent over the Plateau and the Rossby wave pattern over the North Pacific. The origin of the variability is instability associated with the zonally extended potential vorticity PV minimum on a θ-surface, as proposed by Hsu and Plumb (2000). This minimum is due to the tendency to reduce the PV above the heating over the Plateau and to advection by the consequent anticyclone of high PV around from the east and low PV to the west. The deep convection to the south and southeast of the Plateau tends to suppress the quasi-biweekly oscillation because the low PV produced above it acts to reduce the meridional PV gradient reversal. The occurrence of the oscillation depends on the relative magnitude of the heating in the two regions.
Resumo:
The grass species Miscanthus sinensis, Echinochloa crus-galli and Phalaris arundinacea may be useful biomass crops. In glasshouse inoculations with two isolates of Barley yellow dwarf virus (BYDV)-MAV and BYDV-PAV and one of Cereal yellow dwarf virus (CYVD)-RPV , E. crus galli was infected by all three virus isolates, P. arundinacea by BYDV-MAV and CYDV-RPV, but M. sinensis only by BYDV-MAV. All three hosts became very difficult to infect after several weeks’ growth. Symptoms were inconspicuous; dry matter yield losses ranged from c. 20–40%. Aphids acquired all three virus isolates from E. crus-galli, but more efficiently from 5 than 26-week-old plants. Only BYDV-MAV was acquired from P. arundinacea and M. sinensis. Plants of each species and of Avena sativa were grown outdoors between May and July in 1994 and 1995. Young plants of each species were exposed for successive 2-week intervals during the same periods. Vector populations were higher on A. sativa and P. arundinacea than on E. crus-galli and M. sinensis, and more plants of these species became infected. In 1994 only BYDV-MAV was detected. In 1995 BYDV-MAV, BYDV-PAV and CYDV-RPV were all detected; BYDV-MAV was again the virus isolate most frequently found.
Resumo:
The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and found to comprise both fast and slow processes. The fast response is similar to the inter-annual signature of the Southern Annular Mode (SAM) on Sea Surface Temperature (SST), on to which the ozone-hole forcing projects in the summer. It comprises enhanced northward Ekman drift inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone-hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow-timescale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea-ice cover year-round. This two-timescale behavior - rapid cooling followed by slow but persistent warming - is found in the two coupled models analysed, one with an idealized geometry, the other a complex global climate model with realistic geometry. Processes that control the timescale of the transition from cooling to warming, and their uncertainties are described. Finally we discuss the implications of our results for rationalizing previous studies of the effect of the ozone-hole on SST and sea-ice extent. %Interannual variability in the Southern Annular Mode (SAM) and sea ice covary such that an increase and southward shift in the surface westerlies (a positive phase of the SAM) coincides with a cooling of Sea Surface Temperature (SST) around 70-50$^\circ$S and an expansion of the sea ice cover, as seen in observations and models alike. Yet, in modeling studies, the Southern Ocean warms and sea ice extent decreases in response to sustained, multi-decadal positive SAM-like wind anomalies driven by 20th century ozone depletion. Why does the Southern Ocean appear to have disparate responses to SAM-like variability on interannual and multidecadal timescales? Here it is demonstrated that the response of the Southern Ocean to ozone depletion has a fast and a slow response. The fast response is similar to the interannual variability signature of the SAM. It is dominated by an enhanced northward Ekman drift, which transports heat northward and causes negative SST anomalies in summertime, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year round. The enhanced northward Ekman drift causes a region of Ekman divergence around 70-50$^\circ$S, which results in upwelling of warmer waters from below the mixed layer. With sustained westerly wind enhancement in that latitudinal band, the warming due to the anomalous upwelling of warm waters eventually dominates over the cooling from the anomalous Ekman drift. Hence, the slow response ultimately results in a positive SST anomaly and a reduction in the sea ice cover year round. We demonstrate this behavior in two models: one with an idealized geometry and another, more detailed, global climate model. However, the models disagree on the timescale of transition from the fast (cooling) to the slow (warming) response. Processes that controls this transition and their uncertainties are discussed.
Resumo:
Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by non-stationarity. We highlight a pronounced quasi-two-year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for non-stationarity. We then investigate the consequences of this non-stationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to non-stationary interannual variability external to any potential feedback process in the mid-latitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and re-analysis data as well as for understanding the mechanisms underlying variations in the zonal wind.