15 resultados para Plates (structural components)

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intact, enveloped coronavirus particles vary widely in size and contour, and are thus refractory to study by traditional structural means such as X-ray crystallography. Electron microscopy (EM) overcomes some problems associated with particle variability and has been an important tool for investigating coronavirus ultrastructure. However, EM sample preparation requires that the specimen be dried onto a carbon support film before imaging, collapsing internal particle structure in the case of coronaviruses. Moreover, conventional EM achieves image contrast by immersing the specimen briefly in heavy-metal-containing stain, which reveals some features while obscuring others. Electron cryomicroscopy (cryo-EM) instead employs a porous support film, to which the specimen is adsorbed and flash-frozen. Specimens preserved in vitreous ice over holes in the support film can then be imaged without additional staining. Cryo-EM, coupled with single-particle image analysis techniques, makes it possible to examine the size, structure and arrangement of coronavirus structural components in fully hydrated, native virions. Two virus purification procedures are described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of plants fibre reinforced composites has continuously increased during recent years. Their low density, higher environmental friendliness, and reduced cost proved particularly attractive for low-tech applications e.g., in building, automotive and leisure time industry. However, a major limitation to the use of these materials in structural components is unsatisfactory impact performance. An intermediate approach, the production of glass/ plant fibre hybrid laminates, has also been explored, trying to obtain materials with sufficient impact properties, whilst retaining a reduced cost and a substantial environmental gain. A survey is given on some aspects, crucial for the use of glass/plant fibre hybrid laminates in structural components: performance of hybrids when subjected to impact testing; the effect of laminate configuration, manufacturing procedure and fibre treatment on impact properties of the composite. Finally, indications are provided for a suitable selection of plant fibres with minimal extraction damage and sufficient toughness, for introduction in an impact-resistant glass/plant fibre hybrid laminate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatty acids are known to play diverse roles in immune cells. They are important as a source of energy, as structural components of cell membranes, as signaling molecules and as precursors for the synthesis of eicosanoids and similar mediators. Recent research has suggested that the localization and organisation of fatty acids into distinct cellular pools has a direct influence on the behaviour of a number of proteins involved in immune cell activation, including those associated with T cell responses, antigen presentation and fatty acid-derived inflammatory mediator production. This article reviews these studies and places them in the context of existing literature in the field. These studies indicate the existence of several novel mechanisms by which altered fatty acid availability can modulate immune responses and impact upon clinical outcomes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatty acids have diverse roles in all cells. They are important as a source of energy, as structural components of cell membranes, as signalling molecules and as precursors for the synthesis of eicosanoids. Recent research has suggested that the organization of fatty acids into distinct cellular pools has a particularly important role in cells of the immune system and that forms of lipid trafficking exist, which are as yet poorly understood. This Review examines the nature and regulation of cellular lipid pools in the immune system, their delivery of fatty acids or fatty acid derivatives to specific locations and their potential role in health and disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence is presented of widespread changes in structure and species composition between the 1980s and 2003–2004 from surveys of 249 British broadleaved woodlands. Structural components examined include canopy cover, vertical vegetation profiles, field-layer cover and deadwood abundance. Woods were located in 13 geographical localities and the patterns of change were examined for each locality as well as across all woods. Changes were not uniform throughout the localities; overall, there were significant decreases in canopy cover and increases in sub-canopy (2–10 m) cover. Changes in 0.5–2 m vegetation cover showed strong geographic patterns, increasing in western localities, but declining or showing no change in eastern localities. There were significant increases in canopy ash Fraxinus excelsior and decreases in oak Quercus robur/petraea. Shrub layer ash and honeysuckle Lonicera periclymenum increased while birch Betula spp. hawthorn Crataegus monogyna and hazel Corylus avellana declined. Within the field layer, both bracken Pteridium aquilinum and herbs increased. Overall, deadwood generally increased. Changes were consistent with reductions in active woodland management and changes in grazing and browsing pressure. These findings have important implications for sustainable active management of British broadleaved woodlands to meet silvicultural and biodiversity objectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background—Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results—A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions—These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines the relationship between language, culture, and identity in a corpus of gay personal ads collected from two publications in Hong Kong in the three years before the 1997 transition of sovereignty. Gay personal ads are seen äs an "island of discourse," whose marginal nature is reflected in the use of language and in turn reflects issues of marginalization in the larger social context. Using Fairclough's (1992, 1993) three- dimensional model for critical discourse analysis, an attempt is made to uncover the relationship between text structure and issues ofpower/ideology in the society that produces the texts. On the level of text, it was found that structural components, particularly the degree of grammatical elaboration, differ according to the stated race or cultural background of the authors and their targets. On the level of discourse practice, authors were found to appropriate a variety of "voices"from the larger culture arena, the use of which amplifies or limits the participation of particular classes of individuals. Finally, on the level of social practice, the ads were found to reflect and re-create both the racial stereotypes and heterosexist ideology found in the dominant culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of side chain liquid crystal copolymers have been prepared using mesogenic and non-mesogenic units. It is found that high levels of the non-mesogenic moieties may be introduced without completely disrupting the organization of the liquid crystal phase. Incorporation of this comonomer causes a marked reduction in the glass transition temperature (Tg), presumably as a result of enhanced backbone mobility and a corresponding lowering of the nematic transition temperature, thereby restricting the temperature range for stability of the liquid crystal phase. The effect of the interactions between the various components of these side-chain polymers on their electro-optic responses is described. Infrared (i.r.) dichroism measurements have been made to determine the order parameters of the liquid crystalline side-chain polymers. By identifying a certain band (CN stretching) in the i.r. absorption spectrum, the order parameter of the mesogenic groups can be obtained. The temperature and composition dependence of the observed order parameter are related to the liquid crystal phase transitions and to the electro-optic response. It is found that the introduction of the non-mesogenic units into the polymer chain lowers the threshold voltage of the electro-optic response over and above that due to the reduction in the order parameter. The dynamic electro-optic responses are dominated by the temperature-dependent viscosity and evidence is presented for relaxation processes involving the polymer backbone which are on a time scale greater than that for the mesogenic side-chain units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of inulin as fat replacer on short dough biscuits and their corresponding doughs. A control formulation, with no replacement, and four formulations in which 10, 20, 30, and 40 % of shortening was replaced by inulin were studied. In the dough, shortening was observed surrounding flour components. At higher fat replacement levels, flour was more available for hydration leading to significant (P<0.05) harder doughs: from 2.76 (0.12)N in 10 % fat-replaced biscuits to 5.81 (1.56)N in 30 % fat-replaced ones. Biscuit structure was more continuous than dough structure. A continuous fat layer coated the matrix surface, where starch granules were embedded. In general, weight loss during baking and water activity decreased significantly (P<0.05) as fat replacement increased. Biscuit dimensions and aeration decreased when fat replacement increased, e.g., width gain was +1.20 mm in 10 fat-replaced biscuits and only +0.32 mm in 40 % fat-replaced ones. Panelist found biscuits with 20 % of fat replacement slightly harder than control biscuits. It can be concluded that shortening may be partially replaced, up to 20 %, with inulin. These low fat biscuits are similar than the control biscuits, and they can have additional health benefits derived from inulin presence.