6 resultados para Plasticity.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Skeletal muscle constitutes a highly adaptable and malleable tissue that responds to environmental and physiological challenges by changing its phenotype in terms of size and composition, outcomes that are brought about by changes in gene expression, biochemical and metabolic properties. Both the short- and long-term effects of nutritional alterations on skeletal muscle homeostasis have been defined as the object of intensive research over the last thirty years. This review focuses predominantly on assimilating our understanding of the changes in muscle fibre phenotype and functional properties induced by either food restriction or alternatively existing on a high fat diet. Firstly, food restriction has been shown in a number of studies to decrease the myofibre cross sectional area and consistently, it has been found that glycolytic type IIB fibres are more prone to atrophy than oxidative fibres. Secondly, in rodents, a high fat diet has been shown to induce an oxidative profile in skeletal muscle, although obese humans usually show higher numbers of glycolytic type IIB fibres. Moreover, attention is paid to the effect of prenatal maternal food restriction on muscle development of the offspring in various species. A key point related to these experiments is the timing of food restriction for the mother. Furthermore, we explore extensively the seemingly species-specific response to maternal malnutrition. Finally, key signalling molecules that play a pivotal role in energy metabolism, fibre type transitions and muscle hypertrophy are discussed in detail.
Resumo:
EGb 761 is a standardized extract from the Ginkgo biloba leaf and is purported to improve age-related memory impairment. The acute and chronic effect of EGb 761 on synaptic transmission and plasticity in hippocampal slices from young adult (8-12 weeks) and aged (18-24 months) C57B1/6 mice was tested because hippocampal plasticity is believed to be a key component of memory. Acutely applied EGb 761 significantly increased neuronal excitability in slices from aged mice by reducing the population spike threshold and increased the early phase of long-term potentiation, though there was no effect in slices from young adults. In chronically treated mice fed for 30 days with an EGb 761-supplemented diet, EGb 761 significantly increased the population spike threshold and long-term potentiation in slices from aged animals, but had no effect on slices from young adults. The rapid effects of EGb 761 on plasticity indicate a direct interaction with the glutamatergic system and raise interesting implications with respect to a mechanism explaining its effect on cognitive enhancement in human subjects experiencing dementia. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Epigenetics has progressed rapidly from an obscure quirk of heredity into a data-heavy ‘omic’ science. Our understanding of the molecular mechanisms of epigenomic regulation, and the extent of its importance in nature, are far from complete, but in spite of such drawbacks, population-level studies are extremely valuable: epigenomic regulation is involved in several processes central to evolutionary biology including phenotypic plasticity, evolvability and the mediation of intragenomic conflicts. The first studies of epigenomic variation within populations suggest high levels of phenotypically relevant variation, with the patterns of epigenetic regulation varying between individuals and genome regions as well as with environment. Epigenetic mechanisms appear to function primarily as genome defences, but result in the maintenance of plasticity together with a degree of buffering of developmental programmes; periodic breakdown of epigenetic buffering could potentially cause variation in rates of phenotypic evolution.
Resumo:
The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour oddball detection task with Greek and English speakers, a recent study suggests that language effects may exist at early stages of perceptual integration [Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. (2009). Unconscious effects of language-specific terminology on pre-attentive colour perception. Proceedings of the National Academy of Sciences, 106, 4567–4570]. In this paper, we test whether in Greek speakers exposure to a new cultural environment (UK) with contrasting colour terminology from their native language affects early perceptual processing as indexed by an electrophysiological correlate of visual detection of colour luminance. We also report semantic mapping of native colour terms and colour similarity judgements. Results reveal convergence of linguistic descriptions, cognitive processing, and early perception of colour in bilinguals. This result demonstrates for the first time substantial plasticity in early, pre-attentive colour perception and has important implications for the mechanisms that are involved in perceptual changes during the processes of language learning and acculturation.
Resumo:
There is strong evidence that neonates imitate previously unseen behaviors. These behaviors are predominantly used in social interactions, demonstrating neonates’ ability and motivation to engage with others. Research on neonatal imitation can provide a wealth of information about the early mirror neuron system (MNS): namely, its functional characteristics, its plasticity from birth, and its relation to skills later in development. Though numerous studies document the existence of neonatal imitation in the laboratory, little is known about its natural occurrence during parent-infant interactions and its plasticity as a consequence of experience. We review these critical aspects of imitation, which we argue are necessary for understanding the early action-perception system. We address common criticisms and misunderstandings about neonatal imitation and discuss methodological differences among studies. Recent work reveals that individual differences in neonatal imitation positively correlate with later social, cognitive, and motor development. We propose that such variation in neonatal imitation could reflect important individual differences of the MNS. Although postnatal experience is not necessary for imitation, we present evidence that neonatal imitation is influenced by experience in the first week of life.
Resumo:
Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that alpha/beta suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between alpha/beta suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.