6 resultados para Plasma ions
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present an analysis of a “quasi-steady” cusp ion dispersion signature observed at low altitudes. We reconstruct the field-parallel part of the Cowley-D ion distribution function, injected into the open LLBL in the vicinity of the reconnection X-line. From this we find the field-parallel magnetosheath flow at the X-line was only 20 ± 60 km s−1, placing the reconnection site close to the flow streamline which is perpendicular to the magnetosheath field. Using interplanetary data and assuming the subsolar magnetopause is in pressure balance, we derive a wealth of information about the X-line, including: the density, flow, magnetic field and Alfvén speed of the magnetosheath; the magnetic shear across the X-line; the de-Hoffman Teller speed with which field lines emerge from the X-line; the magnetospheric field; and the ion transmission factor across the magnetopause. The results indicate that some heating takes place near the X-line as the ions cross the magnetopause, and that sheath densities may be reduced in a plasma depletion layer. We also compute the reconnection rate. Despite its quasi-steady appearance on an ion spectrogram, this cusp is found to reveal a large pulse of enhanced reconnection rate.
Resumo:
A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.
Resumo:
A new dayside source of O+ ions for the polar magnetosphere is described, and a statistical survey presented of upward flows of O+ ions using 2 years of data from the retarding ion mass spectrometer (RIMS) experiment on board DE 1, at geocentric distances below 3 RE and invariant latitudes above 40°. The flows are classified according to their spin angle distributions. It is believed that the spacecraft potential near perigee is generally less than +2 V, in which case the entire O+ population at energies below about 60 eV is sampled. Examples are given of field-aligned flow and of transversely accelerated “core” O+ ions; in the latter events a large fraction of the total O+ ion population has been transversely accelerated, and in some extreme cases all the observed ions (of all ion species) have been accelerated, and no residual cold population is observed (“toroidal” distributions). However, by far the most common type of O+ upflow seen by DE RIMS lies near the dayside polar cap boundary (particularly in the prenoon sector) and displays an asymmetric spin angle distribution. In such events the ions carry an upward heat flux, and strong upflow of all species is present (H+, He+, O+, O++, and N+ have all been observed with energies up to about 30 eV, but with the majority of ions below about 2 eV); hence, these have been termed upwelling ion events. The upwelling ions are embedded in larger regions of classical light ion polar wind and are persistently found under the following conditions: at geocentric distances greater than 1.4 RE; at all Kp in summer, but only at high Kp in winter. Low-energy conical ions (<30 eV) are only found near the equatorial edge of the events, the latitude of which moves equatorward with increasing Kp and is highly correlated with the location of field-aligned currents. The RIMS data are fully consistent with a “mass spectrometer effect,” whereby light ions and the more energetic O+ ions flow into the lobes and mantle and hence the far-tail plasma sheet, but lower-energy O+ is swept across the polar cap by the convection electric field, potentially acting as a source for the nightside auroral acceleration regions. The occurrence probability of upwelling ion events, as compared to those of low-altitude transversely accelerated core ions and of field-aligned flow, suggests this could be the dominant mechanism for supplying the nightside auroral acceleration region, and subsequently the ring current and near-earth plasma sheet, with ionospheric O+ ions. It is shown that the total rate of O+ outflow in upwelling ion events (greater than 10^25 s^{−1}) is sufficient for the region near the dayside polar cap boundary to be an important ionospheric heavy ion source.
Resumo:
Linear theory, model ion-density profiles and MSIS neutral thermospheric predictions are used to investigate the stability of the auroral, topside ionosphere to oxygen cyclotron waves: variations of the critical height, above which the plasma is unstable, with field-aligned current, thermal ion density and exospheric temperature are considered. In addition, probabilities are assessed that interactions with neutral atomic gases prevent O+ ions from escaping into the magnetosphere after they have been transversely accelerated by these waves. The two studies are combined to give a rough estimate of the total O+ escape flux as a function of the field-aligned current density for an assumed rise in the perpendicular ion temperature. Charge exchange with neutral oxygen, not hydrogen, is shown to be the principle limitation to the escape of O+ ions, which occurs when the waves are driven unstable down to low altitudes. It is found that the largest observed field-aligned current densities can heat a maximum of about 5×1014 O+ ions m−2 to a threshold above which they are subsequently able to escape into the magnetosphere in the following 500s. Averaged over this period, this would constitute a flux of 1012 m−2 s−1 and in steady-state the peak outflow would then be limited to about 1013 m−2 s−1 by frictional drag on thermal O+ at lower altitudes. Maximum escape is at low plasma density unless the O+ scale height is very large. The outflow decreases with decreasing field-aligned current density and, to a lesser extent, with increasing exospheric temperature. Upward flowing ion events are evaluated as a source of O+ ions for the magnetosphere and as an explanation of the observed solar cycle variation of ring current O+ abundance.
Resumo:
A method for quantifying diffusive flows of O+ ions in the topside ionosphere from satellite soundings is described. A departure from diffusive equilibrium alters the shape of the plasma scale-height profile near the F2-peak where ion-neutral frictional drag is large. The effect enables the evaluation of , the field-aligned flux of O+ ions relative to the neutral oxygen atom gas, using MSIS model values for the neutral thermospheric densities and temperature. Upward flow values are accurate to within about 10%, the largest sources of error being the MSIS prediction for the concentration of oxygen atoms and the plasma temperature gradient deduced from the sounding. Downward flux values are only determined to within 20%. From 60,000 topside soundings, taken at the minimum and rising phase of the solar cycle, a total of 1098 mean scale-height profiles are identified for which no storm sudden commencement had occurred in the previous 12 days and for which Kp was less than 2o, each mean profile being an average of about six soundings. A statistical study ofdeduced from these profiles shows the diurnal cycle of O+ flow in the quiet, topside ionosphere at mid-latitudes and its seasonal variations. The differences betweenand ion flux observations from incoherent scatter radars are considered using the meridional thermospheric winds predicted by a global, three-dimensional model. The mean interhemispheric flow from summer to winter is compared with predictions by a numerical model of the protonospheric coupling of conjugate ionospheres for up to 6 days following a geomagnetic storm. The observed mean (of order 3 × 1016 ions day−1 along a flux tube of area 1 m2 at 1000 km) is larger than predicted for day 6 and the suggested explanation is a decrease in upward flows from the winter, daytime ionosphere between the sixth and twelfth days.
Resumo:
Flows of thermal atomic oxygen (O+) ions are deduced from topside ionospheric plasma density profiles. The mean flux within most of the polar cap is of the order of 10^12 m^{−2} s^{−1}, a figure which is consistent with both theoretical and experimental estimates of the light ion polar wind at greater altitudes. Larger flows (up to 6 × 10^12 m^{−2} s^{−1}) are observed near the poleward edge of the night-side statistical auroral oval, a feature not reproduced in the light ion flux. The implication is one of a low altitude acceleration mechanism, acting upon the O+ ions at these latitudes and at heights above that at which the fluxes are observed. Such a process would enable ions to escape from the ionosphere because they do not exchange charge with neutral hydrogen. The observations are in general agreement with energetic O+ ions as previously observed in various parts of the magnetosphere.