32 resultados para Plant genetic structure
em CentAUR: Central Archive University of Reading - UK
Resumo:
This report assesses the implications and revenue-generating potential of options for reform of the International Treaty on Plant Genetic Resources for Food and Agriculture in the context of the structure of the global seed industry and the emerging landscape of plant variety innovation for different crops. The implementation of these options would require modifications of Treaty and provisions of the Standard Material Transfer Agreements to alter the nature of payment obligations related to different categories of products, the payment rates under different options and the coverage of crops in Annex-I to the Treaty.
Resumo:
A recent phylogenetic study based on multiple datasets is used as the framework for a more detailed examination of one of the ten molecularly circumscribed groups identified, the Ophrys fuciflora aggregate. The group is highly morphologically variable, prone to phenotypic convergence, shows low levels of sequence divergence and contains an unusually large proportion of threatened taxa, including the rarest Ophrys species in the UK. The aims of this study were to (a) circumscribe minimum resolvable genetically distinct entities within the O. fuciflora aggregate, and (b) assess the likelihood of gene flow between genetically and geographically distinct entities at the species and population levels. Fifty-five accessions sampled in Europe and Asia Minor from the O. fuciflora aggregate were studied using the AFLP genetic fingerprinting technique to evaluate levels of infraspecific and interspecific genetic variation and to assess genetic relationships between UK populations of O. fuciflora s.s. in Kent and in their continental European and Mediterranean counterparts. The two genetically and geographically distinct groups recovered, one located in England and central Europe and one in south-eastern Europe, are incongruent with current species delimitation within the aggregate as a whole and also within O. fuciflora s.s. Genetic diversity is higher in Kent than in the rest of western and central Europe. Gene flow is more likely to occur between populations in closer geographical proximity than those that are morphologically more similar. Little if any gene flow occurs between populations located in the south-eastern Mediterranean and those dispersed throughout the remainder of the distribution, revealing a genetic discontinuity that runs north-south through the Adriatic. This discontinuity is also evident in other clades of Ophrys and is tentatively attributed to the long-term influence of prevailing winds on the long-distance distribution of pollinia and especially seeds. A cline of gene flow connects populations from Kent and central and southern Europe; these individuals should therefore be considered part of an extensive meta-population. Gene flow is also evident among populations from Kent, which appear to constitute a single metapopulation. They show some evidence of hybridization, and possibly also introgression, with O. apifera.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
Multilocus digenic linkage disequilibria (LD) and their population structure were investigated in eleven landrace populations of barley (Hordeum vulgare ssp. vulgare L.) in Sardinia, using 134 dominant simple-sequence amplified polymorphism markers. The analysis of molecular variance for these markers indicated that the populations were partially differentiated (F ST = 0.18), and clustered into three geographic areas. Consistent with this population pattern, STRUCTURE analysis allocated individuals from a bulk of all populations into four genetic groups, and these groups also showed geographic patterns. In agreement with other molecular studies in barley, the general level of LD was low (13 % of locus pairs, with P < 0.01) in the bulk of 337 lines, and decayed steeply with map distance between markers. The partitioning of multilocus associations into various components indicated that genetic drift and founder effects played a major role in determining the overall genetic makeup of the diversity in these landrace populations, but that epistatic homogenising or diversifying selection was also present. Notably, the variance of the disequilibrium component was relatively high, which implies caution in the pooling of barley lines for association studies. Finally, we compared the analyses of multilocus structure in barley landrace populations with parallel analyses in both composite crosses of barley on the one hand and in natural populations of wild barley on the other. Neither of these serves as suitable mimics of landraces in barley, which require their own study. Overall, the results suggest that these populations can be exploited for LD mapping if population structure is controlled.
Resumo:
Genealogical data have been used very widely to construct indices with which to examine the contribution of plant breeding programmes to the maintenance and enhancement of genetic resources. In this paper we use such indices to examine changes in the genetic diversity of the winter wheat crop in England and Wales between 1923 and 1995. We find that, except for one period characterized by the dominance of imported varieties, the genetic diversity of the winter wheat crop has been remarkably stable. This agrees with many studies of plant breeding programmes elsewhere. However, underlying the stability of the winter wheat crop is accelerating varietal turnover without any significant diversification of the genetic resources used. Moreover, the changes we observe are more directly attributable to changes in the varietal shares of the area under winter wheat than to the genealogical relationship between the varieties sown. We argue, therefore, that while genealogical indices reflect how well plant breeders have retained and exploited the resources with which they started, these indices suffer from a critical limitation. They do not reflect the proportion of the available range of genetic resources which has been effectively utilized in the breeding programme: complex crosses of a given set of varieties can yield high indices, and yet disguise the loss (or non-utilization) of a large proportion of the available genetic diversity.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design
Resumo:
Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and isolated to some degree (e.g. sea loughs and offshore islands). While such features enable easier management, they may have important implications for the genetic structure of protected populations, the ability of populations to recover from local catastrophes and the potential for marine reserves to act as sources of propagules for surrounding areas. Here, we present a case study demonstrating genetic differentiation, isolation, inbreeding and reduced genetic diversity in populations of the dogwhelk Nucella lapillus in Lough Hyne Marine Nature Reserve (an isolated sea lough in southern Ireland), compared with populations on the local adjacent open coast and populations in England, Wales and France. Our study demonstrates that this sea lough is isolated from open coast populations, and highlights that there may be long-term genetic consequences of selecting reserves on the basis of isolation and ease of protection.
Resumo:
The paper highlights the methodological development of identifying and characterizing rice (Oryza sativa L.) ecosystems and the varietal deployment process through participatory approaches. Farmers have intricate knowledge of their rice ecosystems. Evidence from Begnas (mid-hill) and Kachorwa (plain) sites in Nepal suggests that farmers distinguish ecosystems for rice primarily on the basis of moisture and fertility of soils. Farmers also differentiate the number, relative size and specific characteristics of each ecosystem within a given geographic area. They allocate individual varieties to each ecosystem, based on the principle of ‘best fit’ between ecosystem characteristics and varietal traits, indicating that competition between varieties mainly occurs within the ecosystems. Land use and ecosystems determine rice genetic diversity, with marginal land having fewer options for varieties than more productive areas. Modern varieties are mostly confined to productive land, whereas landraces are adapted to marginal ecosystems. Researchers need to understand the ecosystems and varietal distribution within ecosystems better in order to plan and execute programmes on agrobiodiversity conservation on-farm, diversity deployment, repatriation of landraces and monitoring varietal diversity. Simple and practical ways to elicit information on rice ecosystems and associated varieties through farmers’ group discussion at village level are suggested.
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.
Resumo:
The worldwide spread of barley cultivation required adaptation to agricultural environments far distant from those found in its centre of domestication. An important component of this adaptation is the timing of flowering, achieved predominantly in response to day length and temperature. Here, we use a collection of cultivars, landraces and wild barley accessions to investigate the origins and distribution of allelic diversity at four major flowering time loci, mutations at which have been under selection during the spread of barley cultivation into Europe. Our findings suggest that while mutant alleles at the PPD-H1 and PPD-H2 photoperiod loci occurred pre-domestication, the mutant vernalization non-responsive alleles utilized in landraces and cultivars at the VRN-H1 and VRN-H2 loci occurred post-domestication. The transition from wild to cultivated barley is associated with a doubling in the number of observed multi-locus flowering-time haplotypes, suggesting that the resulting phenotypic variation has aided adaptation to cultivation in the diverse ecogeographic locations encountered. Despite the importance of early-flowering alleles during the domestication of barley in Europe, we show that novel VRN alleles associated with early flowering in wild barley have been lost in domesticates, highlighting the potential of wild germplasm as a source of novel allelic variation for agronomic traits.