28 resultados para Plant Disease

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, as well as by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading disease, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Irrigation is a major husbandry tool, vital for world food production and security. The purpose of this review is twofold:- firstly drawing attention to the beneficial and deleterious aspects of irrigation resulting from interactions with the microbial world; secondly, forming a basis for encouraging further research and development. Irrigation is for example, a valuable component in the control of some soil borne pathogens such as Streptomyces scabies, the cause of potato common scab and Fusarium cubense, a cause of banana wilt. By contrast, applying irrigation encourages some foliar pathogens and factors such as splash dispersal of propagules and the retention of leaf wetness are important elements in the successful establishment of disease foci. Irrigation applied at low levels in the canopy directly towards the stem bases and root zones of plants also provides means encouraging disease development. Irrigation also offers means for the direct spread of microbes such as water borne moulds, Oomycetes, and plasmodial pathogens coming from populations present in the water supply. The presence of plant disease causing microbes in sources of irrigation has been associated with outbreaks of diseases such as clubroot (Plasmodiophora brassicae). Irrigation can be utilised as a means for applying agrochemicals, fungigation. The developing technologies of water restriction and root zone drying also have an impact on the success of disease causing organisms. This is an emerging technology and its interactions with benign and pathogenic microbes require consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial soft rot is a globally significant plant disease that causes major losses in the production of many popular crops, such as potato. Little is known about the dispersal and ecology of soft-rot enterobacteria, and few animals have been identified as vectors for these pathogens. This study investigates whether soil-living and bacterial-feeding nematodes could act as vectors for the dispersal of soft-rot enterobacteria to plants. Soft-rot enterobacteria associated with nematodes were quantified and visualized through bacterial enumeration, GFP-tagging, and confocal and electron scanning microscopy. Soft-rot enterobacteria were able to withstand nematode grazing, colonize the gut of Caenorhabditis elegans and subsequently disperse to plant material while remaining virulent. Two nematode species were also isolated from a rotten potato sample obtained from a potato storage facility in Finland. Furthermore, one of these isolates (Pristionchus sp. FIN-1) was shown to be able to disperse soft-rot enterobacteria to plant material. The interaction of nematodes and soft-rot enterobacteria seems to be more mutualistic rather than pathogenic, but more research is needed to explain how soft-rot enterobacteria remain viable inside nematodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review evaluates evidence of the impact of uncomposted plant residues, composts, manures, and liquid preparations made from composts (compost extracts and teas) on pest and disease incidence and severity in agricultural and horticultural crop production. Most reports on pest control using such organic amendments relate to tropical or and climates. The majority of recent work on the use of organic amendments for prevention and control of diseases relates to container-produced plants, particularly ornamentals. However, there is growing interest in the potential for using composts to prevent and control diseases in temperate agricultural and horticultural field crops and information concerning their use and effectiveness is slowly increasing. The impact of uncomposted plant residues, composts, manures, and compost extracts/teas on pests and diseases is discussed in relation to sustainable temperate field and protected cropping systems. The factors affecting efficacy or such organic amendments in preventing and controlling pests and disease are examined and the mechanisms through which control is achieved are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significance of Plasmodiophora brassicae Woronin and clubroot disease which it incites in members of the family Brassicaceae is reviewed as the focus for this special edition of the Journal of Plant Growth Regulation. This is a monographic treatment of recent research into the pathogen and disease; previous similar treatments are now well over half a century old. Vernacular nomenclature of the disease indicates that it had a well-established importance in agriculture and horticulture from at least the Middle Ages onward in Europe and probably earlier. Subsequently, the pathogen probably spread worldwide as a result of transfer on and in fodder taken by colonists as livestock feed. It is a moot point, however, whether there was much earlier spread by P. brassicae into China and subsequently Japan as Brassica rapa (Chinese cabbage and many variants) colonized those lands in archaeological time. Symptoms, worldwide distribution, and economic impact are briefly described here to provide a basis for understanding subsequent papers. Clubroot disease devastates both infected field and protected vegetable and agricultural Brassica crops. Particular importance is placed on recent reports of crop losses in tropical countries, albeit where the crops are grown in cooler altitudes, and in the Canadian prairie land canola crops. The latter is of enormous importance because this crop is the single most important and essential source of vegetable oils used in human foodstuffs and in industrial lubricants where mineral oils are inappropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytophthora ramorum is a damaging invasive plant pathogen and was first discovered in the UK in 2002. Spatial point analyses were applied to the occurrence of this disease in England and Wales during the period of 2003-2006 in order to assess its spatio-temporal spread. Out of the 4301 garden centres and nurseries (GCN) surveyed, there were 164, 105, 123 and 41 sites with P. ramorum in 2003, 2004, 2005 and 2006, respectively. Spatial analysis of the observed point patterns of GCN outbreaks suggested that these sites were significantly clumped within a radius of ca 60 km in 2003, but not in later years. Further analyses were conducted to determine the relationship of GCN outbreak sites over two consecutive years and thus to infer possible disease spread over time. This analysis suggested that disease spread among GCN sites was most likely to have occurred within a distance of 60 km for 2003-2004, but not for the later years. There were 35, 63, 81 and 58 sites with P. ramorum in the semi-natural environment (SNE). Analyses were carried out to assess whether infected GCN sites could act as an inoculum source of infected SNE plants or vice versa. In all years, there was a significant spatial closeness among GCN and SNE outbreak sites within a distance of 1 km. But a significant relationship over a longer distance (within 60 km) was only observed between cases in 2003 and 2004. These analyses suggest that statutory actions taken so far appear to have reduced the extent of long-distance spread of P. ramorum among garden centres and nurseries, but not the disease spread at a shorter distance between GCN and SNE sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Botrytis cinerea occurred commonly on cultivated Primula ×polyantha seed. The fungus was mostly on the outside of the seed but sometimes was present within the seed. The fungus frequently caused disease at maturity in plants grown from the seed, demonstrated by growing plants in a filtered airflow, isolated from other possible sources of infection. Young, commercially produced P. ×polyantha plants frequently had symptomless B. cinerea infections spread throughout the plants for up to 3 months, with symptoms appearing only at flowering. Single genetic individuals of B. cinerea, as determined by DNA fingerprinting, often were dispersed widely throughout an apparently healthy plant. Plants could, however, contain more than one isolate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Dietary a-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. Objective: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. Design: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. Results: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/-SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma a-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. Conclusion: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHID). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of mortality in Western societies, affecting about one third of the population before their seventieth year. Over the past decades modifiable risk factors of CHD have been identified, including smoking and diet. These factors when altered can have a significant impact on an individuals' risk of developing CHD, their overall health and quality of life. There is strong evidence suggesting that dietary intake of plant foods rich in fibre and polyphenolic compounds, effectively lowers the risk of developing CHD. However, the efficacy of these foods often appears to be greater than the sum of their recognised biologically active parts. Here we discuss the hypothesis that beneficial metabolic and vascular effects of dietary fibre and plant polyphenols are due to an up regulation of the colon-systemic metabolic axis by these compounds. Fibres and many polyphenols are converted into biologically active compounds by the colonic microbiota. This microbiota imparts great metabolic versatility and dynamism, with many of their reductive or hydrolytic activities appearing complementary to oxidative or conjugative human metabolism. Understanding these microbial activities is central to determining the role of different dietary components in preventing or beneficially impacting on the impaired lipid metabolism and vascular dysfunction that typifies CHD and type 11 diabetes. This approach lays the foundation for rational selection of health promoting foods, rational target driven design of functional foods, and provides an essential thus-far, overlooked, dynamic to our understanding of how foods recognised as "healthy" impact on the human metabonome.