15 resultados para Planets

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ di↵erent numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should—except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably di↵erent. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively di↵erent behavior—although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate baroclinic instability in flow conditions relevant to hot extrasolar planets. The instability is important for transporting and mixing heat, as well as for influencing large-scale variability on the planets. Both linear normal mode analysis and non-linear initial value cal- culations are carried out – focusing on the freely-evolving, adiabatic situation. Using a high- resolution general circulation model (GCM) which solves the traditional primitive equations, we show that large-scale jets similar to those observed in current GCM simulations of hot ex- trasolar giant planets are likely to be baroclinically unstable on a timescale of few to few tens of planetary rotations, generating cyclones and anticyclones that drive weather systems. The growth rate and scale of the most unstable mode obtained in the linear analysis are in qual- itative, good agreement with the full non-linear calculations. In general, unstable jets evolve differently depending on their signs (eastward or westward), due to the change in sign of the jet curvature. For jets located at or near the equator, instability is strong at the flanks – but not at the core. Crucially, the instability is either poorly or not at all captured in simulations with low resolution and/or high artificial viscosity. Hence, the instability has not been observed or emphasized in past circulation studies of hot extrasolar planets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The banded organization of clouds and zonal winds in the atmospheres of the outer planets has long fascinated observers. Several recent studies in the theory and idealized modeling of geostrophic turbulence have suggested possible explanations for the emergence of such organized patterns, typically involving highly anisotropic exchanges of kinetic energy and vorticity within the dissipationless inertial ranges of turbulent flows dominated (at least at large scales) by ensembles of propagating Rossby waves. The results from an attempt to reproduce such conditions in the laboratory are presented here. Achievement of a distinct inertial range turns out to require an experiment on the largest feasible scale. Deep, rotating convection on small horizontal scales was induced by gently and continuously spraying dense, salty water onto the free surface of the 13-m-diameter cylindrical tank on the Coriolis platform in Grenoble, France. A “planetary vorticity gradient” or “β effect” was obtained by use of a conically sloping bottom and the whole tank rotated at angular speeds up to 0.15 rad s−1. Over a period of several hours, a highly barotropic, zonally banded large-scale flow pattern was seen to emerge with up to 5–6 narrow, alternating, zonally aligned jets across the tank, indicating the development of an anisotropic field of geostrophic turbulence. Using particle image velocimetry (PIV) techniques, zonal jets are shown to have arisen from nonlinear interactions between barotropic eddies on a scale comparable to either a Rhines or “frictional” wavelength, which scales roughly as (β/Urms)−1/2. This resulted in an anisotropic kinetic energy spectrum with a significantly steeper slope with wavenumber k for the zonal flow than for the nonzonal eddies, which largely follows the classical Kolmogorov k−5/3 inertial range. Potential vorticity fields show evidence of Rossby wave breaking and the presence of a “hyperstaircase” with radius, indicating instantaneous flows that are supercritical with respect to the Rayleigh–Kuo instability criterion and in a state of “barotropic adjustment.” The implications of these results are discussed in light of zonal jets observed in planetary atmospheres and, most recently, in the terrestrial oceans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the authors exploit two equivalent formulations of the average rate of material entropy production in the climate system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. This approach is based only on 2D radiative fields at the surface and at the top of atmosphere. Using 2D fields at the top of atmosphere alone, lower bounds to the rate of material entropy production and to the intensity of the Lorenz energy cycle are derived. By introducing a measure of the efficiency of the planetary system with respect to horizontal thermodynamic processes, it is possible to gain insight into a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the Program for Climate Model Diagnosis and Intercomparison (PCMDI)/phase 3 of the Coupled Model Intercomparison Project (CMIP3) dataset in preindustrial climate conditions. It is found that about 90% of the material entropy production is due to vertical processes such as convection, whereas the large-scale meridional heat transport contributes to only about 10% of the total. This suggests that the traditional two-box models used for providing a minimal representation of entropy production in planetary systems are not appropriate, whereas a basic—but conceptually correct—description can be framed in terms of a four-box model. The total material entropy production is typically 55 mW m−2 K−1, with discrepancies on the order of 5%, and CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle featured by CMs are found to be around 1.0–1.5 W m−2, which implies that the derived inequality is rather stringent. When looking at the variability and covariability of the considered thermodynamic quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more uncertain. The contributions to material entropy production from vertical and horizontal processes are positively correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of the large-scale heat flux. The possibility of providing constraints on the 3D dynamics of the fluid envelope based only on 2D observations of radiative fluxes seems promising for the observational study of planets and for testing numerical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results from 30 nights of observations of the open cluster NGC 7789 with the Wide Field Camera on the Isaac Newton Telescope, La Palma. From ~900 epochs, we obtained light curves and Sloan r'-i' colours for ~33000 stars, with ~2400 stars having better than 1 per cent precision. We expected to detect ~2 transiting hot Jupiter planets if 1 per cent of stars host such a companion and a typical hot Jupiter radius is ~1.2R_J. We find 24 transit candidates, 14 of which we can assign a period. We rule out the transiting planet model for 21 of these candidates using various robust arguments. For two candidates, we are unable to decide on their nature, although it seems most likely that they are eclipsing binaries as well. We have one candidate exhibiting a single eclipse, for which we derive a radius of 1.81+0.09-0.00R_J. Three candidates remain that require follow-up observations in order to determine their nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The urban boundary layer (UBL) is the part of the atmosphere in which most of the planet’s population now lives, and is one of the most complex and least understood microclimates. Given potential climate change impacts and the requirement to develop cities sustainably, the need for sound modelling and observational tools becomes pressing. This review paper considers progress made in studies of the UBL in terms of a conceptual framework spanning microscale to mesoscale determinants of UBL structure and evolution. Considerable progress in observing and modelling the urban surface energy balance has been made. The urban roughness sub-layer is an important region requiring attention as assumptions about atmospheric turbulence break down in this layer and it may dominate coupling of the surface to the UBL due to its considerable depth. The upper 90% of the UBL (mixed and residual layers) remains under-researched but new remote sensing methods and high resolution modelling tools now permit rapid progress. Surface heterogeneity dominates from neighbourhood to regional scales and should be more strongly considered in future studies. Specific research priorities include humidity within the UBL, high-rise urban canopies and the development of long-term, spatially extensive measurement networks coupled strongly to model development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation.