2 resultados para Pla estratègic
em CentAUR: Central Archive University of Reading - UK
Resumo:
Cows in severe negative energy balance after calving have reduced fertility, mediated by metabolic signals influencing the reproductive system. We hypothesised that transition diet could alter metabolic status after calving, and thus influence fertility. Multiparous dairy cows were assigned to four transition groups 6 weeks pre-calving and fed: (a) basal control diet (n = 10); (b) basal diet plus barley (STARCH, n = 10); (c) basal diet plus Soypass (high protein, HiPROT, n = 11); or (d) no transition management (NoTRANS, n = 9). All cows received the same lactational diet. Blood samples, body weights and condition scores (BCS) were collected weekly. Fertility parameters were monitored using milk progesterone profiles and were not affected by transition diet. Data from all cows were then combined and analysed according to the pattern of post-partum ovarian activity. Cows with low progesterone profiles had significantly lower insulin-like growth factor-I (IGF-I) and insulin concentrations accompanied by reduced dry matter intakes (DMIs), BCS and body weight. Cows with prolonged luteal activity (PLA) were older and tended to have lower IGF-I. Analysis based on the calving to conception interval revealed that cows which failed to conceive (9/40) also had reduced IGF-I, BCS and body weight. Fertility was, therefore, decreased in cows which were in poor metabolic status following calving. This was reflected in reduced circulating IGF-I concentrations and compromised both ovarian activity and conception. There was little effect of the transition diets on these parameters. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
The thermal properties, crystallization, and morphology of amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino- 2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly (L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA-b-PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk-shape structure and, for high molecular weight samples, the particles displayed unusual star-like shape morphology.