69 resultados para Pirapo River

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood extent maps derived from SAR images are a useful source of data for validating hydraulic models of river flood flow. The accuracy of such maps is reduced by a number of factors, including changes in returns from the water surface caused by different meteorological conditions and the presence of emergent vegetation. The paper describes how improved accuracy can be achieved by modifying an existing flood extent delineation algorithm to use airborne laser altimetry (LiDAR) as well as SAR data. The LiDAR data provide an additional constraint that waterline (land-water boundary) heights should vary smoothly along the flooded reach. The method was tested on a SAR image of a flood for which contemporaneous aerial photography existed, together with LiDAR data of the un-flooded reach. Waterline heights of the SAR flood extent conditioned on both SAR and LiDAR data matched the corresponding heights from the aerial photo waterline significantly more closely than those from the SAR flood extent conditioned only on SAR data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The state of river water deterioration in the Agueda hydrographic basin, mostly in the western part, partly reflects the high rate of housing and industrial development in this area in recent years. The streams have acted as a sink for organic and inorganic loads from several origins: domestic and industrial sewage and agricultural waste. The contents of the heavy metals Cr, Cd, Ni, Cu, Pb, and Zn were studied by sequential chemical extraction of the principal geochemical phases of streambed sediments, in the <63 mum fraction, in order to assess their potential availability to the environment, investigating, the metal concentrations, assemblages, and trends. The granulometric and mineralogical characteristics of this sediment fraction were also studied. This study revealed clear pollution by Cr, Cd, Ni, Cu, Zn, and Pb, as a result from both natural and anthropogenic origins. The chemical transport of metals appears to be essentially by the following geochemical phases, in decreasing order of significance: (exchangeable + carbonates) much greater than (organics) much greater than (Mn and Fe oxides and hydroxides). The (exchangeable + carbonate) phase plays an important part in the fixation of Cu, Ni, Zn, and Cd. The organic phase is important in the fixation of Cr, Pb, and also Cu and Ni. Analyzing the metal contents in the residual fraction, we conclude that Zn and Cd are the most mobile, and Cr and Pb are less mobile than Cu and Ni. The proximity of the pollutant sources and the timing of the influx of contaminated material control the distribution of the contaminant-related sediments locally and on the network scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. In this article, a new deterministic model is introduced which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the four major factors that affect the cyanobacterial bloom formation in freshwaters: light, nutrients, temperature and river flow. The model consists of two sub-models: a vertical migration model with respect to growth of cyanobacteria in relation to light, nutrients and temperature; and a hydraulic model to simulate the horizontal movement of the bloom. This article presents the model algorithms and highlights some important model results. The effects of nutrient limitation, varying illumination and river flow characteristics on cyanobacterial movement are simulated. The results indicate that under high light intensities and in nutrient-rich waters colonies sink further as a result of carbohydrate accumulation in the cells. In turbulent environments, vertical migration is retarded by vertical velocity component generated by turbulent shear stress. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water quality of rainfall and runoff is described for two catchments of two tributaries of the River Thames, the Pang and Lambourn. Rainfall chemistry is variable and concentrations of most determinands decrease with increasing volume of catch probably due to 'wash out' processes. Two rainfall sites have been monitored, one for each catchment. The rainfall site on the Lambourn shows higher chemical concentrations than the one for the Pang which probably reflects higher amounts of local inputs from agricultural activity, Rainfall quality data at a long-term rainfall site on the Pang (UK National Air Quality Archive) shows chemistries similar to that for the Lambourn site. but with some clear differences. Rainfall chemistries show considerable variation on an event-to-event basis. Average water quality concentrations and flow-weighted concentrations as well as fluxes vary across the sites, typically by about 30%. Stream chemistry is much less variable due to the main Source of water coming from aquifer sources of high storage. The relationship between rainfall and runoff chemistry at the catchment outlet is described in terms of the relative proportions of atmospheric and within-catchment sources. Remarkably, in view of the quantity of agricultural and sewage inputs to the streams, the catchments appear to be retaining both P and N.