3 resultados para Pigeons voyageurs

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land snail middens occur widely throughout the circum-Mediterranean, particularly in the Maghreb and Libya, but are relatively understudied when compared with the better known coastal marine middens. The site of Taforalt (Grotte des Pigeons) in north east Morocco contains thick ashy deposits with considerable numbers of land snails, dating between 13,000 and 11,000 BP. The site has been excavated periodically since its discovery in 1908, but little attention has been paid to the land snail component. Recent excavations at the site as part of the Cemeteries and Sedentism Project has facilitated reinvestigation of the Iberomaurusian layers, including the upper ashy midden unit. This investigation addresses questions surrounding chronological variation in the lithic assemblage, subsistence strategies, population health and mortuary practices. Preliminary work on the land snails has identified a low species diversity in the grey series midden layers, characterised by the large edible species Alabastrina alabastrites, Helix cf aspersa, Dupotetia dupotetiana, Otala punctata and Cernuella sp, which appear to represent an abrupt intensification in the use of land snails as a food source. Significant quantities of associated plant material and animal bone suggest that land snails are part of a broader based diet which is adopted from around 13,000 BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endemic pink pigeon has recovered from less than 20 birds in the mid-1970s to 355 free-living individuals in 2003. A major concern for the species' recovery has been the potential genetic problem of inbreeding. Captive pink pigeons bred for reintroduction were managed to maximise founder representation and minimise inbreeding. In this paper, we quantify the effect of inbreeding on survival and reproductive parameters in captive and wild populations and quantify DNA sequence variation in the mitochondrial d-loop region for pink pigeon founders. Inbreeding affected egg fertility, squab, juvenile and adult survival, but effects were strongest in highly inbred birds (F≥0.25). Inbreeding depression was more apparent in free-living birds where even moderate levels of inbreeding affected survival, although highly inbred birds were equally compromised in both captive and wild populations. Mitochondrial DNA haplotypic diversity in pink pigeon founders is low, suggesting that background inbreeding is contributing to low fertility and depressed productivity in this species, as well as comparable survival of some groups of non-inbred and nominally inbred birds. Management of wild populations has boosted population growth and may be required long-term to offset the negative effects of inbreeding depression and enhance the species' survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The survival of many animals hinges upon their ability to avoid collisions with other animals or objects or to precisely control the timing of collisions. Optical expansion provides a compelling impression of object approach and in principle can provide the basis for judgments of time to collision (TTC) [1]. It has been demonstrated that pigeons [2] and houseflies [3] have neural systems that can initiate rapid coordinated actions on the basis of optical expansion. In the case of humans, the linkage between judgments of TTC and coordinated action has not been established at a cortical level. Using functional magnetic resonance imaging (fMRI), we identified superior-parietal and motor-cortex areas that are selectively active during perceptual TTC judgments, some of which are normally involved in producing reach-to-grasp responses. These activations could not be attributed to actual movement of participants. We demonstrate that networks involved in the computational problem of extracting TTC from expansion information have close correspondence with the sensorimotor systems that would be involved in preparing a timed motor response, such as catching a ball or avoiding collision.