13 resultados para Piezoelectric Ceramics
em CentAUR: Central Archive University of Reading - UK
Resumo:
Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.
Resumo:
The Perthshire stone circle of Croft Moraig was excavated 40 years ago and is usually taken to illustrate the classic sequence at such monuments in Britain. A timber setting, accompanied by a shallow ditch, was replaced by two successive stone settings. The pottery associated with the earliest construction was dated to the Neolithic period. A new analysis of the excavated material suggests that, in fact, the ceramics are Middle or Late Bronze Age. They provide a terminus post quem for at least one of the stone settings on the site. Further study of the evidence suggests an alternative sequence of construction at Croft Moraig, involving a change in the axis of the monument. It seems possible that other stone and timber circles were equally late in date and that their period of use in Britain and Ireland may have been longer than is generally supposed.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
A chemically coated piezoelectric sensor has been developed for the determination of PAHs in the liquid phase. An organic monolayer attached to the surface of a gold electrode of a quartz crystal microbalance (QCM) via a covalent thiol-gold link complete with an ionically bound recognition element has been produced. This study has employed the PAH derivative 9-anthracene carboxylic acid which, once bound to the alkane thiol, functions as the recognition element. Binding of anthracene via pi-pi interaction has been observed as a frequency shift in the QCM with a detectability of the target analyte of 2 ppb and a response range of 0-50 ppb. The relative response of the sensor altered for different PAHs despite pi-pi interaction being the sole communication between recognition element and analyte. It is envisaged that such a sensor could be employed in the identification of key marker compounds and, as such, give an indication of total PAH flux in the environment.
Resumo:
An exploratory model for cutting is presented which incorporates fracture toughness as well as the commonly considered effects of plasticity and friction. The periodic load fluctuations Been in cutting force dynamometer tests are predicted, and considerations of chatter and surface finish follow. A non-dimensional group is put forward to classify different regimes of material response to machining. It leads to tentative explanations for the difficulties of cutting materials such as ceramics and brittlo polymers, and also relates to the formation of discontinuous chips. Experiments on a range of solids with widely varying toughness/strength ratios generally agree with the analysis.
Resumo:
Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.
Resumo:
We have carried out a thorough mineralogical analysis of 16 pottery samples from the Lapita site of Bourwera in Fiji, using micromorphological techniques with optical and polarising microscopes. While the overall mineralogy of all of the samples is similar the samples clearly divide into two groups, namely those with or without the mineral calcite. Our findings are backed up by chemical analysis using SEM–EDX and FTIR. SEM–EDX shows the clear presence of inclusions of calcite in some of the samples; FTIR shows bands arising from calcite in these samples. The study suggests that it is likely that more than one clay source was used for production of this pottery, but that most of the pottery comes from a single source. This finding is in line with previous studies which suggest some trading of pottery between the Fijian islands but a single source of clay for most of the pottery found at Bouwera. We found no evidence for the destruction of CaCO3 by heating upon production of the pottery in line with the known technology of the Lapita people who produced earthenware pottery but not high temperature ceramics.
Resumo:
Classical Greek and Roman influence on the material culture of Central Asia and northwestern India is often considered in the abstract. This article attempts to examine the mechanisms of craft production and movement of artisans and objects which made such influence possible, through four case studies: (1) Mould-made ceramics in Hellenistic eastern Bactria; (2) Plaster casts used in the production of metalware from Begram; (3) Terracotta figurines and the moulds used to produce them, from various archaeological sites; and (4) Mass production of identical gold adornments in the nomadic tombs from Tillya Tepe. The implications of such techniques for our understanding of the development of Gandhāran art are also discussed.
Resumo:
Fieldwalking in the Ginosar valley recorded an extensive spread of Late Hellenistic, Roman-period and Byzantine ceramics, tesserae, glass shards, and stone vessel fragments. Architectural stonework in modern Migdal, on the hilltop immediately west of this, seems, in part, to derive from the same site, which extended into the area of the present town. This suggests an urban centre immediately adjacent to, but probably separate from, the Roman-period site usually identified asMagdala, providing a context for the first-century boat currently displayed in the Yigdal Allon museum. The settlement may be identified with one of the un-located toponyms of the coast.
Resumo:
This paper is a case study of the continuum between standardization and variation in the production of red-figure Athenian fine wares in the first half of the 5th century BC. An investigation of the Pan Painter's pelikai reveals that they fall into 3 distinct groups, according to size. While the pelikai in each group are also distinguishable from each other by shape, pattern, and iconography, the next clearest distinction between the groups (after size) is in their style of decoration. The pelikai in the largest group, which is comprised of small pelikai, are particularly distinct from the Pan Painter's broader oeuvre of ca. 220 vases insofar as they exemplify a lackadaisical painting style, which I have termed banausic, on account of its frequent use for images of craftsmen, women at work, and other such genre images. While this casual style is antithetical to the Pain Painter's refined style, for which he is better known, and which he employs for his large pelikai, affinities between the 2 styles—as judged by his confident line, anatomical details, and other technical features—permit the conclusion that this group of pelikai were executed by one and the same craftsman as the others. As with all of the vases attributed to this talented painter, however, the pelikai—whether large or small—are decorated with a great bariety of images. While most painted Athenian vases are understood to have been individually created, not mass-produced, the Pan Painter's coherent group of small pelikai seem to have been created en masse, in a uniform size and shape and with a distinct decorative style. This group of standardized vases represents a body of work executed under the influence or at the behest of a specific vase workshop. The form of the small pelikai in fact allows us to associate them with the Geras Painter. With his work on these small pelikai, perhaps in the latter part of his career, the Pan Painter may have intentionally minimized variability in favour of standardization, to meet market demands.
Resumo:
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.
Resumo:
A supramolecular polymer based upon two complementary polymer components is formed by sequential deposition from solution in THF, using a piezoelectric drop-on-demand inkjet printer. Highly efficient cycloaddition or ‘click’ chemistry afforded a well-defined poly(ethylene glycol) featuring chain-folding diimide end groups, which possesses greatly enhanced solubility in THF relative to earlier materials featuring random diimide sequences. Blending the new polyimide with a complementary poly(ethylene glycol) system bearing pyrene end groups (which bind to the chain-folding diimide units) overcomes the limited solubility encountered previously with chain-folding polyimides in inkjet printing applications. The solution state properties of the resulting polymer blend were assessed via viscometry to confirm the presence of a supramolecular polymer before depositing the two electronically complementary polymers by inkjet printing techniques. The novel materials so produced offer an insight into ways of controlling the properties of printed materials through tuning the structure of the polymer at the (supra)molecular level.