6 resultados para Picea asperata Mast.

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tight junctions between intestinal epithelial cells prevent ingress of luminal macromolecules and bacteria and protect against inflammation and infection. During stress and inflammation, mast cells mediate increased mucosal permeability by unknown mechanisms. We hypothesized that mast cell tryptase cleaves protease-activated receptor 2 (PAR2) on colonocytes to increase paracellular permeability. Colonocytes expressed PAR2 mRNA and responded to PAR2 agonists with increased [Ca2+]i. Supernatant from degranulated mast cells increased [Ca2+]i in colonocytes, which was prevented by a tryptase inhibitor, and desensitized responses to PAR2 agonist, suggesting PAR2 cleavage. When applied to the basolateral surface of colonocytes, PAR2 agonists and mast cell supernatant decreased transepithelial resistance, increased transepithelial flux of macromolecules, and induced redistribution of tight junction ZO-1 and occludin and perijunctional F-actin. When mast cells were co-cultured with colonocytes, mast cell degranulation increased paracellular permeability of colonocytes. This was prevented by a tryptase inhibitor. We determined the role of ERK1/2 and of beta-arrestins, which recruit ERK1/2 to PAR2 in endosomes and retain ERK1/2 in the cytosol, on PAR2-mediated alterations in permeability. An ERK1/2 inhibitor abolished the effects of PAR2 agonist on permeability and redistribution of F-actin. Down-regulation of beta-arrestins with small interfering RNA inhibited PAR2-induced activation of ERK1/2 and suppressed PAR2-induced changes in permeability. Thus, mast cells signal to colonocytes in a paracrine manner by release of tryptase and activation of PAR2. PAR2 couples to beta-arrestin-dependent activation of ERK1/2, which regulates reorganization of perijunctional F-actin to increase epithelial permeability. These mechanisms may explain the increased epithelial permeability of the intestine during stress and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. METHODS: IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. RESULTS: Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). CONCLUSIONS: Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mast cells that are in close proximity to autonomic and enteric nerves release several mediators that cause neuronal hyperexcitability. This study examined whether mast cell tryptase evokes acute and long-term hyperexcitability in submucosal neurons from the guinea-pig ileum by activating proteinase-activated receptor 2 (PAR2) on these neurons. We detected the expression of PAR2 in the submucosal plexus using RT-PCR. Most submucosal neurons displayed PAR2 immunoreactivity, including those colocalizing VIP. Brief (minutes) application of selective PAR2 agonists, including trypsin, the activating peptide SL-NH2 and mast cell tryptase, evoked depolarizations of the submucosal neurons, as measured with intracellular recording techniques. The membrane potential returned to resting values following washout of agonists, but most neurons were hyperexcitable for the duration of recordings (> 30 min-hours) and exhibited an increased input resistance and amplitude of fast EPSPs. Trypsin, in the presence of soybean trypsin inhibitor, and the reverse sequence of the activating peptide (LR-NH2) had no effect on neuronal membrane potential or long-term excitability. Degranulation of mast cells in the presence of antagonists of established excitatory mast cell mediators (histamine, 5-HT, prostaglandins) also caused depolarization, and following washout of antigen, long-term excitation was observed. Mast cell degranulation resulted in the release of proteases, which desensitized neurons to other agonists of PAR2. Our results suggest that proteases from degranulated mast cells cleave PAR2 on submucosal neurons to cause acute and long-term hyperexcitability. This signalling pathway between immune cells and neurons is a previously unrecognized mechanism that could contribute to chronic alterations in visceral function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.