96 resultados para Phytophagous insects.

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant inhibitors of fungal endopolygalacturonases (PGs) that belong to the superfamily of Leu-rich repeat proteins. We have characterized the full complement of pgip genes in the bean (Phaseolus vulgaris) genotype BAT93. This comprises four clustered members that span a 50-kb region and, based on their similarity, form two pairs (Pvpgip1/Pvpgip2 and Pvpgip3/Pvpgip4). Characterization of the encoded products revealed both partial redundancy and subfunctionalization against fungal-derived PGs. Notably, the pair PvPGIP3/PvPGIP4 also inhibited PGs of two mirid bugs (Lygus rugulipennis and Adelphocoris lineolatus). Characterization of Pvpgip genes of Pinto bean showed variations limited to single synonymous substitutions or small deletions. A three-amino acid deletion encompassing a residue previously identified as crucial for recognition of PG of Fusarium moniliforme was responsible for the inability of BAT93 PvPGIP2 to inhibit this enzyme. Consistent with the large variations observed in the promoter sequences, reverse transcription-PCR expression analysis revealed that the different family members differentially respond to elicitors, wounding, and salicylic acid. We conclude that both biochemical and regulatory redundancy and subfunctionalization of pgip genes are important for the adaptation of plants to pathogenic fungi and phytophagous insects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative roles of olfaction and vision in the crepuscular host-finding process of a major lepidopteran pest of cruciferous crops, the diamondback moth Plutella xylostella are investigated in a series of laboratory and semi-field experiments. Flying female moths use volatile plant chemical cues to locate and to promote landing on their host, even in complex mixed-crop environments in large cages. Multiple regression analysis shows that both the plant position (front, middle or back rows) and the type of plant (host plant, nonhost plant) are needed to explain the distribution of insects in such a mixed-crop situation. This strong plant position effect indicates that, when host plants are present in a mixture, foraging P. xylostella are more likely to alight on the first row of the plants. The findings are discussed with regard to current theories of host-plant location by phytophagous insects and the possible implications for integrated pest management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Weeds are major constraints on crop production, yet as part of the primary producers within farming systems, they may be important components of the agroecosystem. Using published literature, the role of weeds in arable systems for other above-ground trophic levels are examined. In the UK, there is evidence that weed flora have changed over the past century, with some species declining in abundance, whereas others have increased. There is also some evidence for a decline in the size of arable weed seedbanks. Some of these changes reflect improved agricultural efficiency, changes to more winter-sown crops in arable rotations and the use of more broad-spectrum herbicide combinations. Interrogation of a database of records of phytophagous insects associated with plant species in the UK reveals that many arable weed species support a high diversity of insect species. Reductions in abundances of host plants may affect associated insects and other taxa. A number of insect groups and farmland birds have shown marked population declines over the past 30 years. Correlational studies indicate that many of these declines are associated with changes in agricultural practices. Certainly reductions in food availability in winter and for nestling birds in spring are implicated in the declines of several bird species, notably the grey partridge, Perdix perdix . Thus weeds have a role within agroecosystems in supporting biodiversity more generally. An understanding of weed competitivity and the importance of weeds for insects and birds may allow the identification of the most important weed species. This may form the first step in balancing the needs for weed control with the requirements for biodiversity and more sustainable production methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale co-phylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on average, wasps had sequences from 77% of six genes (5.6kb), figs had sequences from 60% of five genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based co-phylogenetic analyses further support the co-diversification hypothesis. Biogeographic analyses indicate that the presentday distribution of fig and pollinator lineages is consistent with an Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term co-diversification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their combined effect. We studied the effect of the biotrophic rust fungus Uromyces viciae-fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly and together on the performance of the aphid Aphis fabae Scop. (Hemiptera: Aphididae) on Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae development, survival and fecundity, while rust infection consistently enhanced individual aphids’ performance. These effects varied in linear relation to lesion or pustule density. However, whole-plant infection by either pathogen resulted in a smaller aphid population of smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity with infection. When both fungi were applied simultaneously to a leaf they generally cancelled the effect of each other out, resulting in most performance parameters being similar to the controls, although fecundity was reduced. However, sequential plant infection (pathogens applied five days apart) led to a 70% decrease in fecundity and 50% reduction in intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect on aphids than applying botrytis before rust. Rust infection increased leaf total nitrogen concentration by 30% while infection by botrytis with or without rust led to a 38% decrease. The aphids’ responses to the two plant pathogens individually is consistent with the alteration in plant nutrient content by infection and also the induction of different plant defence pathways and the possible cross-talk between them. This is the first demonstration of the complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores. Key words: Vicia faba, Botrytis cinerea, Uromyces viciae-fabae, tripartite interactions, induced resistance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grasslands restoration is a key management tool contributing to the long-term maintenance of insect populations, providing functional connectivity and mitigating against extinction debt across landscapes. As knowledge of grassland insect communities is limited, the lag between the initiation of restoration and the ability of these new habitats to contribute to the successful enhancement of native biodiversity is unclear. Using two long term data sets, we investigate differences in successional trajectories during the establishment of butterfly (11 years) and phytophagous beetle (13 years) communities during the recreation of calcareous grassland. Overall restoration success was higher for the butterflies than the beetles. However, both shared a general pattern of rapidly increasing restoration success over the first five years, awhich approached an asymptote after c. 10 years. The use of pro-active grassland restoration to mitigate against future environmental change therefore needs to account for such time lag if the value of these habitats is to be fully realised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radar has been applied to the study of insect migration for almost 40 years, but most entomological radars operate at X-band (9.4 GHz, 3.2 cm wavelength), and can only detect individuals of relatively large species, such as migratory grasshoppers and noctuid moths, over all of their flight altitudes. Many insects (including economically important species) are much smaller than this, but development of the requisite higher power and/or higher frequency radar systems to detect these species is often prohibitively expensive. In this paper, attention is focussed upon the uses of some recently-deployed meteorological sensing devices to investigate insect migratory flight behaviour, and especially its interactions with boundary layer processes. Records were examined from the vertically-pointing 35 GHz ‘Copernicus’ and 94 GHz ‘Galileo’ cloud radars at Chilbolton (Hampshire, England) for 12 cloudless and convective occasions in summer 2003, and one of these occasions (13 July) is presented in detail. Insects were frequently found at heights above aerosol particles, which represent passive tracers, indicating active insect movement. It was found that insect flight above the convective boundary layer occurs most often during the morning. The maximum radar reflectivity (an indicator of aerial insect biomass) was found to be positively correlated with maximum screen temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications of atmospheric science are relevant to a range of themes within science and society; application to entomology was the main focus of this meeting organised by Dr Curtis Wood (University of Reading). This meeting was held jointly with the Royal Entomological Society. The talks were designed to appeal to the broader scientific community by showcasing topics near the join of the two disciplines. The audience heard about exciting topics within weather and climate change, how they are applied to entomological science and how insects can be used to advance atmospheric science. The meeting included the 2009 Margary Lecture given by Prof. Philip Mellor from the Institute for Animal Health (IAH) at Pirbright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organicmanagement practices and the specific habitat requirements in the surrounding landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal (AM) fungi have a variety of effects on foliar-feeding insects, with the majority of these being positive, although reports of negative and null effects also exist. Virtually all previous experiments have used mobile insects confined in cages and have studied the effects of one, or at most two, species of mycorrhizae on one species of insect. The purpose of this study was to introduce a greater level of realism into insect-mycorrhizal experiments, by studying the responses of different insect feeding guilds to a variety of AM fungi. We conducted two experiments involving three species of relatively immobile insects (a leaf-mining and two seed-feeding flies) reared in natural conditions on a host (Leucanthemum vulgare). In a field study, natural levels of AM colonization were reduced, while in a phytometer trial, we experimentally colonized host plants with all possible combinations of three known mycorrhizal associates of L. vulgare. In general, AM fungi increased the stature (height and leaf number) and nitrogen content of plants. However, these effects changed through the season and were,dependent on the identity of the fungi in the root system. AM fungi increased host acceptance of all three insects and larval performance of the leaf miner, but these effects were also season- and AM species-dependent. We suggest that the mycorrhizal effect on the performance of the leaf miner is due to fungal-induced changes in host-plant nitrogen content, detected by the adult fly. However, variability in the effect was apparent, because not all AM species increased plant N content. Meanwhile, positive effects of mycorrhizae were found on flower number and flower size, and these appeared to result in enhanced infestation levels by the seed-feeding insects. The results show that AM fungi exhibit ecological specificity, in that different. species have different effects on host-plant growth and chemistry and the performance of foliar-feeding insects. Future studies need to conduct experiments that use ecologically realistic combinations of plants and fungi and allow insects to be reared in natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summer droughts are predicted to increase in severity and frequency in the United Kingdom, due to climate change. Few studies have addressed the impacts of drought on interactions between species, and the majority have focussed on increases in CO2 concentration and changes in temperature. Here, the effect of experimental summer drought on the strength of the plant-mediated interaction between leaf-mining Stephensia brunnichella larvae and root-chewing Agriotes larvae was investigated. Agriotes larvae reduced the abundance and performance of S. brunnichella feeding on a mutual host plant, Clinopodium vulgare, as well as the rate of parasitism of the leaf-miner. The interaction did not, however, occur on plants subjected to a severe drought treatment, which were reduced in size. Changes to summer rainfall, due to climate change, may therefore reduce the occurrence of plant-mediated interactions between insect herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last 60 years changes to the management of species-rich mesotrophic grasslands have resulted in the large-scale loss and degradation of this habitat across Europe. Restoration of such grasslands on agriculturally improved pastures provides a potentially valuable approach to the conservation of these threatened areas. Over a four-year period a replicated block design was used to test the effects of seed addition (green hay spreading and brush harvest collection) and soil disturbance on the restoration of phytophagous beetle and plant communities. Patterns of increasing restoration success, particularly where hay spreading and soil disturbance were used in combination, were identified for the phytophagous beetles. In the case of the plants, however, initial differences in restoration success in response to these same treatments were not followed by subsequent temporal changes in plant community similarity to target mesotrophic grassland. It is possible that the long-term consequences of the management treatments would not be the establishment of beetle and plant communities characteristic of the targets for restoration. Restoration management to enhance plant establishment using hay spreading and soil disturbance techniques would, however, still increase community similarity in both taxa to that of species-rich mesotrophic grasslands, and so raise their conservation value.