62 resultados para Physics Geography
em CentAUR: Central Archive University of Reading - UK
Resumo:
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
Development geography has long sought to understand why inequalities exist and the best ways to address them. Dependency theory sets out an historical rationale for under development based on colonialism and a legacy of developed core and under-developed periphery. Race is relevant in this theory only insofar that Europeans are white and the places they colonised were occupied by people with darker skin colour. There are no innate biological reasons why it happened in that order. However, a new theory for national inequalities proposed by Lynn and Vanhanen in a series of publications makes the case that poorer countries have that status because of a poorer genetic stock rather than an accident of history. They argue that IQ has a genetic basis and IQ is linked to ability. Thus races with a poorer IQ have less ability, and thus national IQ can be positively correlated with performance as measured by an indicator like GDP/capita. Their thesis is one of despair, as little can be done to improve genetic stock significantly other than a programme of eugenics. This paper summarises and critiques the Lynn and Vanhanen hypothesis and the assumptions upon which it is based, and uses this analysis to show how a human desire to simplify in order to manage can be dangerous in development geography. While the attention may naturally be focused on the 'national IQ' variables as a proxy measure of 'innate ability', the assumption of GDP per capita as an indicator of 'success' and 'achievement' is far more readily accepted without criticism. The paper makes the case that the current vogue for indicators, indices and cause-effect can be tyrannical.
Resumo:
Women and Geography Study Group Publication on the anniversary of Geography and Gender. The Women and Geography Study Group's publication "Geography and Gender Reconsidered" (ISBN 0 -902447 - 26 - 2) can now be purchased in UK, USA and Canada. This self-publication on CD-Rom was produced to celebrate and reflect upon the 20 years since the groundbreaking "Geography and Gender" published by the WGSG in 1984, and to coincide with a session at the IGU conference in Glasgow in Aug 2004. The self-publication format allowed a more flexible approach to writing, in addition to minimising the price of the final produce while maximising return for the study group (to support student conference attendance, reading weekends and other activities).
Resumo:
General circulation models (GCMs) use the laws of physics and an understanding of past geography to simulate climatic responses. They are objective in character. However, they tend to require powerful computers to handle vast numbers of calculations. Nevertheless, it is now possible to compare results from different GCMs for a range of times and over a wide range of parameterisations for the past, present and future (e.g. in terms of predictions of surface air temperature, surface moisture, precipitation, etc.). GCMs are currently producing simulated climate predictions for the Mesozoic, which compare favourably with the distributions of climatically sensitive facies (e.g. coals, evaporites and palaeosols). They can be used effectively in the prediction of oceanic upwelling sites and the distribution of petroleum source rocks and phosphorites. Models also produce evaluations of other parameters that do not leave a geological record (e.g. cloud cover, snow cover) and equivocal phenomena such as storminess. Parameterisation of sub-grid scale processes is the main weakness in GCMs (e.g. land surfaces, convection, cloud behaviour) and model output for continental interiors is still too cold in winter by comparison with palaeontological data. The sedimentary and palaeontological record provides an important way that GCMs may themselves be evaluated and this is important because the same GCMs are being used currently to predict possible changes in future climate. The Mesozoic Earth was, by comparison with the present, an alien world, as we illustrate here by reference to late Triassic, late Jurassic and late Cretaceous simulations. Dense forests grew close to both poles but experienced months-long daylight in warm summers and months-long darkness in cold snowy winters. Ocean depths were warm (8 degrees C or more to the ocean floor) and reefs, with corals, grew 10 degrees of latitude further north and south than at the present time. The whole Earth was warmer than now by 6 degrees C or more, giving more atmospheric humidity and a greatly enhanced hydrological cycle. Much of the rainfall was predominantly convective in character, often focused over the oceans and leaving major desert expanses on the continental areas. Polar ice sheets are unlikely to have been present because of the high summer temperatures achieved. The model indicates extensive sea ice in the nearly enclosed Arctic seaway through a large portion of the year during the late Cretaceous, and the possibility of sea ice in adjacent parts of the Midwest Seaway over North America. The Triassic world was a predominantly warm world, the model output for evaporation and precipitation conforming well with the known distributions of evaporites, calcretes and other climatically sensitive facies for that time. The message from the geological record is clear. Through the Phanerozoic, Earth's climate has changed significantly, both on a variety of time scales and over a range of climatic states, usually baldly referred to as "greenhouse" and "icehouse", although these terms disguise more subtle states between these extremes. Any notion that the climate can remain constant for the convenience of one species of anthropoid is a delusion (although the recent rate of climatic change is exceptional). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The article traces the beginnings and early history of feminist geography in the United Kingdom through the memories and personal narratives of two women who were heavily involved in this field of geographical research, in the 1970s, and were founder members of the Women and Geography Study Group of the Institute of British Geographers. The article begins by considering the context (both political and academic) within which feminist geography was born. Second-wave feminism and the rise of the women’s movement, initially in the United States, is seen as a major influence on the development of feminist geography. In the academic world, it was the dominance of quantitative geography in the 1960s, and the related opposition to this positivist paradigm by humanistic and socialist geographers, which led to calls for a recognition of the inequalities faced by women in society and an understanding of the differences in men’s and women’s lives. Through personal narratives, the authors seek to illustrate the obstacles and disagreements, as well as the encouragements and opportunities, which led to the birth of UK-feminist geography. Many individual geographers, influential to the story, are referred to, seen through the eyes of the authors at that time.