98 resultados para Physics, Mathematical

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model incorporating many of the important processes at work in the crystallization of emulsions is presented. The model describes nucleation within the discontinuous domain of an emulsion, precipitation in the continuous domain, transport of monomers between the two domains, and formation and subsequent growth of crystals in both domains. The model is formulated as an autonomous system of nonlinear, coupled ordinary differential equations. The description of nucleation and precipitation is based upon the Becker–Döring equations of classical nucleation theory. A particular feature of the model is that the number of particles of all species present is explicitly conserved; this differs from work that employs Arrhenius descriptions of nucleation rate. Since the model includes many physical effects, it is analyzed in stages so that the role of each process may be understood. When precipitation occurs in the continuous domain, the concentration of monomers falls below the equilibrium concentration at the surface of the drops of the discontinuous domain. This leads to a transport of monomers from the drops into the continuous domain that are then incorporated into crystals and nuclei. Since the formation of crystals is irreversible and their subsequent growth inevitable, crystals forming in the continuous domain effectively act as a sink for monomers “sucking” monomers from the drops. In this case, numerical calculations are presented which are consistent with experimental observations. In the case in which critical crystal formation does not occur, the stationary solution is found and a linear stability analysis is performed. Bifurcation diagrams describing the loci of stationary solutions, which may be multiple, are numerically calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss and test the potential usefulness of single-column models (SCMs) for the testing of stchastic physics schemes that have been proposed for use in general circulation models (GCMs). We argue that although single column tests cannot be definitive in exposing the full behaviour of a stochastic method in the full GCM, and although there are differences between SCM testing of deterministic and stochastic methods, nonetheless SCM testing remains a useful tool. It is necessary to consider an ensemble of SCM runs produced by the stochastic method. These can be usefully compared to deterministic ensembles describing initial condition uncertainty and also to combinations of these (with structural model changes) into poor man's ensembles. The proposed methodology is demonstrated using an SCM experiment recently developed by the GCSS community, simulating the transitions between active and suppressed periods of tropical convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most parameterizations for precipitating convection in use today are bulk schemes, in which an ensemble of cumulus elements with different properties is modelled as a single, representative entraining-detraining plume. We review the underpinning mathematical model for such parameterizations, in particular by comparing it with spectral models in which elements are not combined into the representative plume. The chief merit of a bulk model is that the representative plume can be described by an equation set with the same structure as that which describes each element in a spectral model. The equivalence relies on an ansatz for detrained condensate introduced by Yanai et al. (1973) and on a simplified microphysics. There are also conceptual differences in the closure of bulk and spectral parameterizations. In particular, we show that the convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral parameterizations cannot be carried over to a bulk parameterization in a straightforward way. Quasi-equilibrium of the cloud work function assumes a timescale separation between a slow forcing process and a rapid convective response. But, for the natural bulk analogue to the cloud-work function (the dilute CAPE), the relevant forcing is characterised by a different timescale, and so its quasi-equilibrium entails a different physical constraint. Closures of bulk parameterization that use the non-entraining parcel value of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz must be invoked as a necessary ingredient of those closures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.