11 resultados para Physical quantities
em CentAUR: Central Archive University of Reading - UK
Resumo:
The definition of coherent derived units in the International System of Units (SI) is reviewed, and the important role of the equations defining physical quantities is emphasized in obtaining coherent derived units. In the case of the dimensionless quantity plane angle, the choice between alternative definitions is considered, leading to a corresponding choice between alternative definitions of the coherent derived unit - the radian, degree or revolution. In this case the General Conference on Weights and Measures (CGPM) has chosen to adopt the definition that leads to the radian as the coherent derived unit in the SI. In the case of the quantity logarithmic decay (or gain), also sometimes called decrement, and sometimes called level, a similar choice of defining equation exists, leading to a corresponding choice for the coherent derived unit - the neper or the bel. In this case the CGPM has not yet made a choice. We argue that for the quantity logarithmic decay the most logical choice of defining equation is linked to that of the radian, and is that which leads to the neper as the corresponding coherent derived unit. This should not prevent us from using the bel and decibel as units of logarithmic decay. However, it is an important part of the SI to establish in a formal sense the equations defining physical quantities, and the corresponding coherent derived units.
Resumo:
Based on the availability of hemispheric gridded data sets from observations, analysis and global climate models, objective cyclone identification methods were developed and applied to these data sets. Due to the large amount of investigation methods combined with the variety of different datasets, a multitude of results exist, not only for the recent climate period but also for the next century, assuming anthropogenic changed conditions. Different thresholds, different physical quantities, and considerations of different atmospheric vertical levels add to a picture that is difficult to combine into a common view of cyclones, their variability and trends, in the real world and in GCM studies. Thus, this paper will give a comprehensive review of the actual knowledge on climatologies of mid-latitude cyclones for the Northern and Southern Hemisphere for the present climate and for its possible changes under anthropogenic climate conditions.
Resumo:
Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.
Resumo:
The first IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units (the Green Book) of which this is the direct successor, was published in 1969, with the object of 'securing clarity and precision, and wider agreement in the use of symbols, by chemists in different countries, among physicists, chemists and engineers, and by editors of scientific journals'. Subsequent revisions have taken account of many developments in the field, culminating in the major extension and revision represented by the 1988 edition under the simplified title Quantities, Units and Symbols in Physical Chemistry. This 2007, third edition, is a further revision of the material which reflects the experience of the contributors with the previous editions. The book has been systematically brought up to date and new sections have been added. It strives to improve the exchange of scientific information among the readers in different disciplines and across different nations. In a rapidly expanding volume of scientific literature where each discipline has a tendency to retreat into its own jargon this book attempts to provide a readable compilation of widely used terms and symbols from many sources together with brief understandable definitions. This is the definitive guide for scientists and organizations working across a multitude of disciplines requiring internationally approved nomenclature.
Resumo:
The linear isomer of dodecylbenzene (DDB), 1-phenyldodecane, was aged at temperatures of 105 and 135 degrees C in air and the resultant products were analyzed using a range of analytical techniques. On ageing, the 1-phenyldodecane darkened, the acid number, dielectric loss and water content increased and significant oxidation peaks were detected in the infrared spectrum. When aged in the presence of copper, a characteristic peak at 680 nm was also detected by UV/visible spectroscopy but, compared with previous studies of a cable-grade DDB, the strength of this peak was much increased and no appreciable precipitate formation occurred. At the same time, very high values of dielectric loss were recorded. On ageing in the absence of copper, an unusually strong infrared carbonyl band was seen, which correlates well with the detection of dodecanophenone by gas chromatography / mass spectrometry and nuclear magnetic resonance spectroscopy. It was therefore concluded that the ageing process proceeds via the initial production of aromatic ketones, which may then be further oxidized to carboxylic acids. In the presence of copper, these oxidation products are present in lower quantities, most of these oxidation products being combined with the copper present in the oil to give copper carboxylates. The behavior is described in terms of a complex autoxidation mechanism, in which copper acts as both an oxidizing and a reducing agent, depending on its oxidation state and, in particular, promotes elimination via the oxidation of intermediate alkyl radical species to carbocations.
Resumo:
The classic vertical advection-diffusion (VAD) balance is a central concept in studying the ocean heat budget, in particular in simple climate models (SCMs). Here we present a new framework to calibrate the parameters of the VAD equation to the vertical ocean heat balance of two fully-coupled climate models that is traceable to the models’ circulation as well as to vertical mixing and diffusion processes. Based on temperature diagnostics, we derive an effective vertical velocity w∗ and turbulent diffusivity k∗ for each individual physical process. In steady-state, we find that the residual vertical velocity and diffusivity change sign in mid-depth, highlighting the different regional contributions of isopycnal and diapycnal diffusion in balancing the models’ residual advection and vertical mixing. We quantify the impacts of the time-evolution of the effective quantities under a transient 1%CO2 simulation and make the link to the parameters of currently employed SCMs.