9 resultados para Physical Adsorption

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a recent interest to use inorganic-based magnetic nanoparticles as a vehicle to carry biomolecules for various biophysical applications, but direct attachment of the molecules is known to alter their conformation leading to attenuation in activity. In addition, surface immobilization has been limited to monolayer coverage. It is shown that alternate depositions of negatively charged protein molecules, typically bovine serum albumin (BSA) with a positively charged aminocarbohydrate template such as glycol chitosan (GC) on magnetic iron oxide nanoparticle surface as a colloid, are carried out under pH 7.4. Circular dichroism (CD) clearly reveals that the secondary structure of the entrapped BSA sequential depositions in this manner remains totally unaltered which is in sharp contrast to previous attempts. Probing the binding properties of the entrapped BSA using small molecules (Site I and Site II drug compounds) confirms for the first time the full retention of its biological activity as compared with native BSA, which also implies the ready accessibility of the entrapped protein molecules through the porous overlayers. This work clearly suggests a new method to immobilize and store protein molecules beyond monolayer adsorption on a magnetic nanoparticle surface without much structural alteration. This may find applications in magnetic recoverable enzymes or protein delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric catalysis is of paramount importance in organic synthesis and, in current practice, is achieved by means of homogeneous catalysts. The ability to catalyze such reactions heterogeneously would have a major impact both in the research laboratory and in the production of fine chemicals and pharmaceuticals, yet heterogeneous asymmetric hydrogenation of C═C bonds remains hardly explored. Very recently, we demonstrated how chiral ligands that anchor robustly to the surface of Pd nanoparticles promote asymmetric catalytic hydrogenation: ligand rigidity and stereochemistry emerged as key factors. Here, we address a complementary question: how does the enone reactant adsorb on the metal surface, and what implications does this have for the enantiodifferentiating interaction with the surface-tethered chiral modifiers? A reaction model is proposed, which correctly predicts the identity of the enantiomer experimentally observed in excess.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coadsorption of water and preadsorbed oxygen on Ru{0001) was studied by synchrotron-based high-resolution x-ray photoelectron spectroscopy. A dramatic change was observed in the interaction of water with oxygen between low and high oxygen precoverages. Low oxygen coverages below 0.18 ML induce partial dissociation, which leads to an adsorbed layer of H2O and OH. Around half the oxygen atoms take part in this reaction. All OH recombines upon heating to 200 K and desorbs together with H2O. Oxygen coverages between 0.20 and 0.50 ML inhibit dissociation, instead a highly stable intact water species is observed, which desorbs at 220 K. This species is significantly more stable than intact water on the clean surface. The stabilization is most likely due to the formation of hydrogen bonds with neighboring oxygen atoms. For intermediate oxygen coverages around 0.18 ML, the dissociation behavior depends on the preparation conditions, which points toward possible mechanisms and pathways for partial dissociation of water on Ru{0001}.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied enantiospecific differences in the adsorption of (S)- and (R)-alanine on Cu{531}R using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. At saturation coverage, alanine adsorbs as alaninate forming a p(1 4) superstructure. LEED shows a significantly higher degree of long-range order for the S than for the R enantiomer. Also carbon K-edge NEXAFS spectra show differences between (S)- and (R)-alanine in the variations of the ð resonance when the linear polarization vector is rotated within the surface plane. This indicates differences in the local adsorption geometries of the molecules, most likely caused by the interaction between the methyl group and the metal surface and/or intermolecular hydrogen bonds. Comparison with model calculations and additional information from LEED and photoelectron spectroscopy suggest that both enantiomers of alaninate adsorb in two different orientations associated with triangular adsorption sites on {110} and {311} microfacets of the Cu{531} surface. The experimental data are ambiguous as to the exact difference between the local geometries of the two enantiomers. In one of two models that fit the data equally well, significantly more (R)-alaninate molecules are adsorbed on {110} sites than on {311} sites whereas for (S)-alaninate the numbers are equal. The enantiospecific differences found in these experiments are much more pronounced than those reported from other ultrahigh vacuum techniques applied to similar systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of oxygen on the chiral Pt{531} surface was studied by high-resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). After the surface is annealed in oxygen (3 x 10(-7) mbar), three O 1s peaks are observed in XPS. One peak, at 529.5 eV, is assigned to chemisorbed oxygen; it disappears after annealing in vacuo to temperatures above 900 K. The other two peaks at 530.8 and 532.3 eV are stable up to at least 1250 K. They are associated with oxide clusters on the surface. These clusters readily react with coadsorbed carbon monoxide at temperatures between 315 and 620 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rutile TiO2(110) surface has been doped with sub-monolayer metallic Cr, which oxidises and donates charge to specific surface Ti ions. X-Ray and ultra violet photoemission spectroscopy and first principles density functional theory with Hubbard U are used to assign the oxidation states of Cr and surface Ti and we find that Cr2+ forms on bridging oxygen ions and a 5-fold coordinated surface Ti atom is reduced to Ti3+ and the Cr ions readily react with oxygen (to Cr3+), which leads to depletion of surface Ti3+ 3d electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MD simulation studies showing the influence of porosity and carbon surface oxidation on phenol adsorption from aqueous solutions on carbons are reported. Based on a realistic model of activated carbon, three carbon structures with gradually changed microporosity were created. Next, a different number of surface oxygen groups was introduced. The pores with diameters around 0.6 nm are optimal for phenol adsorption and after the introduction of surface oxygen functionalities, adsorption of phenol decreases (in accordance with experimental data) for all studied models. This decrease is caused by a pore blocking effect due to the saturation of surface oxygen groups by highly hydrogen-bounded water molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).