28 resultados para Photothermal spectroscopy of liquids
em CentAUR: Central Archive University of Reading - UK
Resumo:
The product of the Asinger reaction between elemental sulfur, n-butylamine and acetophenone is 8-(n-butylaminophenylmethyliden)-1,2,3,4,5,6,7-heptathiocane which contains a CS7 ring. A combination of infrared, Raman and inelastic neutron scattering spectroscopies with periodic density functional theory calculations is used to provide a complete assignment of the vibrational spectra of this unusual species. The similarity between the Raman spectra of the compound and that of elemental sulfur is particularly striking. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Intracavity photoacoustic overtone spectrum of monofluoroacetylene, HCCF, has been recorded in the wave number region 10 750–14 500 cm−1 with a titanium:sapphire ring laser. The spectrum contains many dense vibration–rotation band systems which can be resolved with Doppler limited resolution. Altogether 58 individual overtone bands have been analyzed rotationally. Many of the observed bands show perturbations of which some have been attributed to anharmonic resonance interactions. A Fermi resonance model based on conventional rectilinear normal coordinate theory has been used to assign vibrationally bands from this work and from earlier studies. Many of the observed vibrational term values and rotational constants can be reproduced well with this model. The results show the importance of the Fermi resonance interactions at the high overtone excitations.
Resumo:
We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The zinc and cadmium ethylxanthate complexes of N,N,N',N'-tetramethylethylenediamine (TMEDA), [M(S2COEt)(2)TMEDA], were synthesized and characterized with infrared, H-1 and C-13 NMR spectroscopy, mass spectrometry and X-ray crystallography. Whereas the cadmium complex has a six-coordinate {CdS4N2} centre with bidentate xanthate ligands, the zinc complex contains four coordinate {ZnS2N2} zinc with two monodentate xanthate groups. The cadmium species [Cd(S2COEt)(2)(diamine)] (where diamine = N,N-dimethylethylenediamine or N,N'-diisopropylethylenediamine) were also synthesized. The surfactant-assisted formation of nanoparticles from [Cd(S2COEt)(2)] and [Cd(S2COEt)(2)TMEDA] was studied with TEM, XRD and XRF techniques. From [Cd(S2COEt)(2)], spherical nanoparticle aggregates 140-200 nm in diameter were obtained but from [Cd(S2COEt)(2)TMEDA], single nanoparticles were produced with estimated diameters in the range of 4-7 nm and almost no aggregation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We present argon predissociation vibrational spectra of the OH-.H2O and Cl-.H2O complexes in the 1000-1900 cm(-1) energy range, far below the OH stretching region reported in previous studies. This extension allows us to explore the fundamental transitions of the intramolecular bending vibrations associated with the water molecule, as well as that of the shared proton inferred from previous assignments of overtones in the higher energy region. Although the water bending fundamental in the Cl-.H2O spectrum is in very good agreement with expectations, the OH-.H2O spectrum is quite different than anticipated, being dominated by a strong feature at 1090 cm(-1). New full-diniensionality calculations of the OH-.H2O vibrational level structure using diffusion Monte Carlo and the VSCF/CI methods indicate this band arises from excitation of the shared proton.
Resumo:
An experimental technique based on a scheme of vibrationally mediated photodissociation has been developed and applied to the spectroscopic study of highly excited vibrational states in HCN, with energies between 29 000 and 30 000 cm(-1). The technique consists of four sequential steps: in the first one, a high power laser is used to vibrationally excite the sample to an intermediate state, typically (0,0,4), the nu(3) mode being approximately equivalent to the C-H stretching vibration. Then a second laser is used to search for transitions between this intermediate state and highly vibrationally excited states. When one of these transitions is found, HCN molecules are transferred to a highly excited vibrational state. Third, a ultraviolet laser photodissociates the highly excited molecules to produce H and CN radicals in its A (2)Pi electronic state. Finally, a fourth laser (probe) detects the presence of the CN(A) photofragments by means of an A-->B-->X laser induced fluorescence scheme. The spectra obtained with this technique, consisting of several rotationally resolved vibrational bands, have been analyzed. The positions and rotational parameters of the states observed are presented and compared with the results of a state-of-the-art variational calculation. (C) 2004 American Institute of Physics.
Resumo:
We have used high energy transfer (HET) inelastic neutron scattering spectroscopy to measure the vibrational modes in the spectra of hydroxyapatite, bone and brushite to confirm our earlier work that only a fraction of the hydroxyl groups in bone mineral are substituted. The HET spectra are better observed due to the higher scattering cross section of hydrogen compared with the other elements in the calcium phosphate compounds. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Epitaxial ultrathin titanium dioxide films of 0.3 to similar to 7 nm thickness on a metal single crystal substrate have been investigated by high resolution vibrational and electron spectroscopies. The data complement previous morphological data provided by scanned probe microscopy and low energy electron diffraction to provide very complete characterization of this system. The thicker films display electronic structure consistent with a stoichiometric TiO2 phase. The thinner films appear nonstoichiometric due to band bending and charge transfer from the metal substrate, while work function measurements also show a marked thickness dependence. The vibrational spectroscopy shows three clear phonon bands at 368, 438, and 829 cm(-1) (at 273 K), which confirms a rutile structure. The phonon band intensity scales linearly with film thickness and shift slightly to lower frequencies with increasing temperature, in accord with results for single crystals. (c) 2007 American Institute of Physics.
Resumo:
Using high-time-resolution (72 ms) spectroscopy of AE Aqr obtained with LRIS on Keck II we have determined the spectrum and spectral evolution of a small flare. Continuum and integrated line fluxes in the flare spectrum are measured, and the evolution of the flare is parametrized for future comparison with detailed models of the flares. We find that the velocities of the flaring components are consistent with those previously reported for AE Aqr by Welsh, Horne & Gomer and Horne. The characteristics of the 33-s oscillations are investigated: we derive the oscillation amplitude spectrum, and from that determine the spectrum of the heated regions on the rotating white dwarf. Blackbody fits to the major and minor pulse spectra and an analysis of the emission-line oscillation properties highlight the shortfalls in the simple hotspot model for the oscillations.
Resumo:
We present an analysis of Rapid Keck Spectroscopy of the CVs AM Her (polar) and SS Cyg (dwarf nova). We decompose the spectra into constant and variable components and identify different types of variability in AM Her with different characteristic timescales. The variable flickering component of the accretion disc flux and the observational characteristics of a small flare in SS Cyg are isolated.