15 resultados para Photography - Special effects
em CentAUR: Central Archive University of Reading - UK
Resumo:
The emergence and development of digital imaging technologies and their impact on mainstream filmmaking is perhaps the most familiar special effects narrative associated with the years 1981-1999. This is in part because some of the questions raised by the rise of the digital still concern us now, but also because key milestone films showcasing advancements in digital imaging technologies appear in this period, including Tron (1982) and its computer generated image elements, the digital morphing in The Abyss (1989) and Terminator 2: Judgment Day (1991), computer animation in Jurassic Park (1993) and Toy Story (1995), digital extras in Titanic (1997), and ‘bullet time’ in The Matrix (1999). As a result it is tempting to characterize 1981-1999 as a ‘transitional period’ in which digital imaging processes grow in prominence and technical sophistication, and what we might call ‘analogue’ special effects processes correspondingly become less common. But such a narrative risks eliding the other practices that also shape effects sequences in this period. Indeed, the 1980s and 1990s are striking for the diverse range of effects practices in evidence in both big budget films and lower budget productions, and for the extent to which analogue practices persist independently of or alongside digital effects work in a range of production and genre contexts. The chapter seeks to document and celebrate this diversity and plurality, this sustaining of earlier traditions of effects practice alongside newer processes, this experimentation with materials and technologies old and new in the service of aesthetic aspirations alongside budgetary and technical constraints. The common characterization of the period as a series of rapid transformations in production workflows, practices and technologies will be interrogated in relation to the persistence of certain key figures as Douglas Trumbull, John Dykstra, and James Cameron, but also through a consideration of the contexts for and influences on creative decision-making. Comparative analyses of the processes used to articulate bodies, space and scale in effects sequences drawn from different generic sites of special effects work, including science fiction, fantasy, and horror, will provide a further frame for the chapter’s mapping of the commonalities and specificities, continuities and variations in effects practices across the period. In the process, the chapter seeks to reclaim analogue processes’ contribution both to moments of explicit spectacle, and to diegetic verisimilitude, in the decades most often associated with the digital’s ‘arrival’.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
This book investigates the challenges that the presence of digital imaging within the cinematic frame can pose for the task of interpretation. Applying close textual analysis to a series of case studies, the book demystifies the relationship of digital imaging to processes of watching and reading films, and develops a methodology for approaching the digital in popular cinema. In doing so, the study places contemporary digital imaging practice in relation to historical traditions of filmmaking and special effects practice, and proposes a fresh, flexible approach the the close reading of film that can take appropriate account of the presence of the digital.
Resumo:
This article examines the ways that technological objects inside the home are viewed and productively used by a group of older people to extend their access to environments beyond the home. Beginning with a discussion of types of domestic object, we highlight appliances and gadgets, and focus our attentions on the latter. The changes in life brought on by ageing, in particular a reduction in mobility, provide the context for our study, in which access to the outside world becomes increasingly difficult. Recognising their changing circumstances led our participants to actively and selectively engage with these objects, mitigating the shrinking of their accessible environment by using them as a gateway to the many virtual worlds now available. We coin the term ‘portal objects’ to describe the potential that this type of technological object provides, and suggest that the investigation of interiors can be enriched by recognising and including the worlds outside that become integral to occupation inside.
Resumo:
Aerosols from anthropogenic and natural sources have been recognized as having an important impact on the climate system. However, the small size of aerosol particles (ranging from 0.01 to more than 10 μm in diameter) and their influence on solar and terrestrial radiation makes them difficult to represent within the coarse resolution of general circulation models (GCMs) such that small-scale processes, for example, sulfate formation and conversion, need parameterizing. It is the parameterization of emissions, conversion, and deposition and the radiative effects of aerosol particles that causes uncertainty in their representation within GCMs. The aim of this study was to perturb aspects of a sulfur cycle scheme used within a GCM to represent the climatological impacts of sulfate aerosol derived from natural and anthropogenic sulfur sources. It was found that perturbing volcanic SO2 emissions and the scavenging rate of SO2 by precipitation had the largest influence on the sulfate burden. When these parameters were perturbed the sulfate burden ranged from 0.73 to 1.17 TgS for 2050 sulfur emissions (A2 Special Report on Emissions Scenarios (SRES)), comparable with the range in sulfate burden across all the Intergovernmental Panel on Climate Change SRESs. Thus, the results here suggest that the range in sulfate burden due to model uncertainty is comparable with scenario uncertainty. Despite the large range in sulfate burden there was little influence on the climate sensitivity, which had a range of less than 0.5 K across the ensemble. We hypothesize that this small effect was partly associated with high sulfate loadings in the control phase of the experiment.
Resumo:
Inferences consistent with “recognition-based” decision-making may be drawn for various reasons other than recognition alone. We demonstrate that, for 2-alternative forced-choice decision tasks, less-is-more effects (reduced performance with additional learning) are not restricted to recognition-based inference but can also be seen in circumstances where inference is knowledge-based but item knowledge is limited. One reason why such effects may not be observed more widely is the dependence of the effect on specific values for the validity of recognition and knowledge cues. We show that both recognition and knowledge validity may vary as a function of the number of items recognized. The implications of these findings for the special nature of recognition information, and for the investigation of recognition-based inference, are discussed
Resumo:
This paper provides an overview of analytical techniques used to determine isoflavones (IFs) in foods and biological fluids with main emphasis on sample preparation methods. Factors influencing the content of IFs in food including processing and natural variability are summarized and an insight into IF databases is given. Comparisons of dietary intake of IFs in Asian and Western populations, in special subgroups like vegetarians, vegans, and infants are made and our knowledge on their absorption, distribution, metabolism, and excretion by the human body is presented. The influences of the gut microflora, age, gender, background diet, food matrix, and the chemical nature of the IFs on the metabolism of IFs are described. Potential mechanisms by which IFs may exert their actions are reviewed, and genetic polymorphism as determinants of biological response to soy IFs is discussed. The effects of IFs on a range of health outcomes including atherosclerosis, breast, intestinal, and prostate cancers, menopausal symptoms, bone health, and cognition are reviewed on the basis of the available in vitro, in vivo animal and human data.
Resumo:
Inference on the basis of recognition alone is assumed to occur prior to accessing further information (Pachur & Hertwig, 2006). A counterintuitive result of this is the “less-is-more” effect: a drop in the accuracy with which choices are made as to which of two or more items scores highest on a given criterion as more items are learned (Frosch, Beaman & McCloy, 2007; Goldstein & Gigerenzer, 2002). In this paper, we show that less-is-more effects are not unique to recognition-based inference but can also be observed with a knowledge-based strategy provided two assumptions, limited information and differential access, are met. The LINDA model which embodies these assumptions is presented. Analysis of the less-is-more effects predicted by LINDA and by recognition-driven inference shows that these occur for similar reasons and casts doubt upon the “special” nature of recognition-based inference. Suggestions are made for empirical tests to compare knowledge-based and recognition-based less-is-more effects
Resumo:
We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200–350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.
Resumo:
This paper presents measurements of the vertical distribution of aerosol extinction coefficient over West Africa during the Dust and Biomass-burning Aerosol Experiment (DABEX)/African Monsoon Multidisciplinary Analysis dry season Special Observing Period Zero (AMMA-SOP0). In situ aircraft measurements from the UK FAAM aircraft have been compared with two ground-based lidars (POLIS and ARM MPL) and an airborne lidar on an ultralight aircraft. In general, mineral dust was observed at low altitudes (up to 2 km), and a mixture of biomass burning aerosol and dust was observed at altitudes of 2–5 km. The study exposes difficulties associated with spatial and temporal variability when intercomparing aircraft and ground measurements. Averaging over many profiles provided a better means of assessing consistent errors and biases associated with in situ sampling instruments and retrievals of lidar ratios. Shortwave radiative transfer calculations and a 3-year simulation with the HadGEM2-A climate model show that the radiative effect of biomass burning aerosol was somewhat sensitive to the vertical distribution of aerosol. In particular, when the observed low-level dust layer was included in the model, the absorption of solar radiation by the biomass burning aerosols increased by 10%. We conclude that this absorption enhancement was caused by the dust reflecting solar radiation up into the biomass burning aerosol layer. This result illustrates that the radiative forcing of anthropogenic absorbing aerosol can be sensitive to the presence of natural aerosol species.
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Resumo:
This special issue is focused on the assessment of algorithms for the observation of Earth’s climate from environ- mental satellites. Climate data records derived by remote sensing are increasingly a key source of insight into the workings of and changes in Earth’s climate system. Producers of data sets must devote considerable effort and expertise to maximise the true climate signals in their products and minimise effects of data processing choices and changing sensors. A key choice is the selection of algorithm(s) for classification and/or retrieval of the climate variable. Within the European Space Agency Climate Change Initiative, science teams undertook systematic assessment of algorithms for a range of essential climate variables. The papers in the special issue report some of these exercises (for ocean colour, aerosol, ozone, greenhouse gases, clouds, soil moisture, sea surface temper- ature and glaciers). The contributions show that assessment exercises must be designed with care, considering issues such as the relative importance of different aspects of data quality (accuracy, precision, stability, sensitivity, coverage, etc.), the availability and degree of independence of validation data and the limitations of validation in characterising some important aspects of data (such as long-term stability or spatial coherence). As well as re- quiring a significant investment of expertise and effort, systematic comparisons are found to be highly valuable. They reveal the relative strengths and weaknesses of different algorithmic approaches under different observa- tional contexts, and help ensure that scientific conclusions drawn from climate data records are not influenced by observational artifacts, but are robust.