4 resultados para Phosphorothioate
em CentAUR: Central Archive University of Reading - UK
Resumo:
Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.
Resumo:
NMR spectroscopy has been used to investigate the conformational effects of single and two consecutive 3′-S-phosphorothiolate modifications within a deoxythymidine trinucleotide. The presence of a single 3′-phosphorothioate modification shifts the conformation of the sugar ring it is attached to, from a mainly south to north pucker; this effect is also transmitted to the 3′-neighbour deoxyribose. This transmission is thought to be caused by favourable stacking of the heterocyclic bases. Similar observations have been made previously by this group. When two adjacent modifications are present, the conformations of the attached deoxyribose rings are again shifted almost completely to the north, however, there is no transmission to the 3′ deoxyribose ring. Base proton chemical shift analysis and molecular modelling have been used to aid elucidation of the origin of this feature. The observation for the dimodified sequence is consistent with our previously reported results for a related system in which spaced modifications are more thermodynamically stable than consecutive ones.
Resumo:
The mechanism of the Escherichia coli DNA T:G mismatch endonuclease (Vsr) has been investigated using oligodeoxynucleotides substituted, at the scissile phosphate, with isomeric phosphorothioates and a 3'-phosphorothiolate. Binding and kinetic data with the phosphorothioates/phosphorothiolate indicate that the two magnesium ions, which constitute essential co-factors, are required to stabilise the extra negative charge developed on the phosphate as the transition state is formed. Additionally one of the magnesium ions serves to activate the leaving group (the non-bridging 3'-oxygen atom of the scissile phosphate) during the hydrolysis reaction. Stereochemical analysis, using the R-p phosphorothioate isomer, indicates that Vsr carries out a hydrolytic reaction with inversion of stereochemistry at phosphorus, compatible with an in-line attack of water and a pentacovalent transition state with trigonal bipyramidal geometry. In conjunction with structures of Vsr bound to its products, these data allow the reconstruction of the enzyme-substrate complex and a comprehensive description of the hydrolysis mechanism. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2’O-methyl phosphorothioate RNA (2’OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.