2 resultados para Phi Beta Kappa addresses.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H2N-Ile-Aib-Leu-m-ABA-CO2H, containing non-coded Aib (alpha-amino isobutyric acid) and m-ABA (meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric beta-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the beta-hairpins with beta-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with phi: -49.5(5)degrees, psi: 135.2(5)degrees in type II and phi: 50.6(6)degrees. psi: -137.0(4)degrees in type II' for occupying the i + 1 position of the beta-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between CO2- and -+NH3 groups to form dimeric supramolecular beta-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of beta-hairpin structure in water. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present study addresses three methodological questions that have been ignored in previous research on EEG indices of the human mirror neuron system (hMNS), particularly in regard to autistic individuals. The first question regards how to elicit the EEG indexed hMNS during movement observation: Is hMNS activation best elicited using long stimulus presentations or multiple short repetitions? The second question regards what EEG sensorimotor frequency bands reflect sensorimotor reactivity during hand movement observation? The third question regards how widespread is the EEG reactivity over the sensorimotor cortex during movement observation? The present study explored sensorimotor alpha and low beta reactivity during hand movement versus static hand or bouncing balls observation and compared two experimental protocols (long exposure vs. multiple repetitions) in the same participants. Results using the multiple repetitions protocol indicated a greater low beta desynchronisation over the sensorimotor cortex during hand movement compared to static hand and bouncing balls observation. This result was not achieved using the long exposure protocol. Therefore, the present study suggests that the multiple repetitions protocol is a more robust protocol to use when exploring the sensorimotor reactivity induced by hand action observation. In addition, sensorimotor low beta desynchronisation was differently modulated during hand movement, static hand and bouncing balls observation (non-biological motion) while it was not the case for sensorimotor alpha and that suggest that low beta may be a more sensitive index of hMNS activation during biological motion observation. In conclusion the present study indicates that sensorimotor reactivity of low beta during hand movement observation was found to be more widespread over the sensorimotor cortex than previously thought.