6 resultados para Phase Transformation

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A macroscopically oriented inverse hexagonal phase (HII) of the lipid phytantriol in water is converted to an oriented inverse double diamond bicontinuous cubic phase (QIID). The initial HII phase is uniaxially oriented about the long axis of a capillary with the cylinders parallel to the capillary axis. The HII phase is converted by cooling to a QII D phase which is also highly oriented, where the cylindrical axis of the former phase has been converted to a ⟨110⟩ axis in the latter, as demonstrated by small-angle X-ray scattering. This epitaxial relationship allows us to discriminate between two competing proposed geometric pathways to convert HII to QIID. Our findings also suggest a new route to highly oriented cubic phase coatings, with applications as nanomaterial templates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulsed Phase Thermography (PPT) has been proven effective on depth retrieval of flat-bottomed holes in different materials such as plastics and aluminum. In PPT, amplitude and phase delay signatures are available following data acquisition (carried out in a similar way as in classical Pulsed Thermography), by applying a transformation algorithm such as the Fourier Transform (FT) on thermal profiles. The authors have recently presented an extended review on PPT theory, including a new inversion technique for depth retrieval by correlating the depth with the blind frequency fb (frequency at which a defect produce enough phase contrast to be detected). An automatic defect depth retrieval algorithm had also been proposed, evidencing PPT capabilities as a practical inversion technique. In addition, the use of normalized parameters to account for defect size variation as well as depth retrieval from complex shape composites (GFRP and CFRP) are currently under investigation. In this paper, steel plates containing flat-bottomed holes at different depths (from 1 to 4.5 mm) are tested by quantitative PPT. Least squares regression results show excellent agreement between depth and the inverse square root blind frequency, which can be used for depth inversion. Experimental results on steel plates with simulated corrosion are presented as well. It is worth noting that results are improved by performing PPT on reconstructed (synthetic) rather than on raw thermal data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher order cumulant analysis is applied to the blind equalization of linear time-invariant (LTI) nonminimum-phase channels. The channel model is moving-average based. To identify the moving average parameters of channels, a higher-order cumulant fitting approach is adopted in which a novel relay algorithm is proposed to obtain the global solution. In addition, the technique incorporates model order determination. The transmitted data are considered as independently identically distributed random variables over some discrete finite set (e.g., set {±1, ±3}). A transformation scheme is suggested so that third-order cumulant analysis can be applied to this type of data. Simulation examples verify the feasibility and potential of the algorithm. Performance is compared with that of the noncumulant-based Sato scheme in terms of the steady state MSE and convergence rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use new neutron scattering instrumentation to follow in a single quantitative time-resolving experiment, the three key scales of structural development which accompany the crystallisation of synthetic polymers. These length scales span 3 orders of magnitude of the scattering vector. The study of polymer crystallisation dates back to the pioneering experiments of Keller and others who discovered the chain-folded nature of the thin lamellae crystals which are normally found in synthetic polymers. The inherent connectivity of polymers makes their crystallisation a multiscale transformation. Much understanding has developed over the intervening fifty years but the process has remained something of a mystery. There are three key length scales. The chain folded lamellar thickness is ~ 10nm, the crystal unit cell is ~ 1nm and the detail of the chain conformation is ~ 0.1nm. In previous work these length scales have been addressed using different instrumention or were coupled using compromised geometries. More recently researchers have attempted to exploit coupled time-resolved small-angle and wide-angle x-ray experiments. These turned out to be challenging experiments much related to the challenge of placing the scattering intensity on an absolute scale. However, they did stimulate the possibility of new phenomena in the very early stages of crystallisation. Although there is now considerable doubt on such experiments, they drew attention to the basic question as to the process of crystallisation in long chain molecules. We have used NIMROD on the second target station at ISIS to follow all three length scales in a time-resolving manner for poly(e-caprolactone). The technique can provide a single set of data from 0.01 to 100Å-1 on the same vertical scale. We present the results using a multiple scale model of the crystallisation process in polymers to analyse the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A macroscopically oriented double diamond inverse bicontinuous cubic phase (QIID) of the lipid glycerol monooleate is reversibly converted into a gyroid phase (QIIG). The initial QIID phase is prepared in the form of a film coating the inside of a capillary, deposited under flow, which produces a sample uniaxially oriented with a ⟨110⟩ axis parallel to the symmetry axis of the sample. A transformation is induced by replacing the water within the capillary tube with a solution of poly(ethylene glycol), which draws water out of the QIID sample by osmotic stress. This converts the QIID phase into a QIIG phase with two coexisting orientations, with the ⟨100⟩ and ⟨111⟩ axes parallel to the symmetry axis, as demonstrated by small-angle X-ray scattering. The process can then be reversed, to recover the initial orientation of QIID phase. The epitaxial relation between the two oriented mesophases is consistent with topologypreserving geometric pathways that have previously been hypothesized for the transformation. Furthermore, this has implications for the production of macroscopically oriented QIIG phases, in particular with applications as nanomaterial templates.