53 resultados para Pesticides -- Absorption and adsorption

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes some of the results of a detailed farm-level survey of 32 small-scale cotton farmers in the Makhathini Flats region of South Africa. The aim was to assess and measure some of the impacts (especially in terms of savings in pesticide and labour as well as benefits to human health) attributable to the use of insect-tolerant Bt cotton. The study reveals a direct cost benefit for Bt growers of SAR416 ($51) per hectare per season due to a reduction in the number of insecticide applications. Cost savings emerged in the form of lower requirements for pesticide, but also important were reduced requirements for water and labour. The reduction in the number of sprays was particularly beneficial to women who do some spraying and children who collect water and assist in spraying. The increasing adoption rate of Bt cotton appears to have a health benefit measured in terms of reported rates of accidental insecticide poisoning. These appear to be declining as the uptake of Bt cotton increases. However, the understanding of refugia and their management by local farmers are deficient and need improving. Finally, Bt cotton growers emerge as more resilient in absorbing price fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes some of the results of a detailed farm-level survey of 32 small-scale cotton farmers in the Makhathini Flats region of South Africa. The aim was to assess and measure some of the impacts (especially in terms of savings in pesticide and labour as well as benefits to human health) attributable to the use of insect-tolerant Bt cotton. The study reveals a direct cost benefit for Bt growers of SAR416 ($51) per hectare per season due to a reduction in the number of insecticide applications. Cost savings emerged in the form of lower requirements for pesticide, but also important were reduced requirements for water and labour. The reduction in the number of sprays was particularly beneficial to women who do some spraying and children who collect water and assist in spraying. The increasing adoption rate of Bt cotton appears to have a health benefit measured in terms of reported rates of accidental insecticide poisoning. These appear to be declining as the uptake of Bt cotton increases. However, the understanding of refugia and their management by local farmers are deficient and need improving. Finally, Bt cotton growers emerge as more resilient in absorbing price fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more complete understanding of amino acid ( AA) metabolism by the various tissues of the body is required to improve upon current systems for predicting the use of absorbed AA. The objective of this work was to construct and parameterize a model of net removal of AA by the portal-drained viscera (PDV). Six cows were prepared with arterial, portal, and hepatic catheters and infused abomasally with 0, 200, 400, or 600 g of casein daily. Casein infusion increased milk yield quadratically and tended to increase milk protein yield quadratically. Arterial concentrations of a number of essential AA increased linearly with respect to infusion amount. When infused casein was assumed to have a true digestion coefficient of 0.95, the minimum likely true digestion coefficient for noninfused duodenal protein was found to be 0.80. Net PDV use of AA appeared to be linearly related to total supply (arterial plus absorption), and extraction percentages ranged from 0.5 to 7.25% for essential AA. Prediction errors for portal vein AA concentrations ranged from 4 to 9% of the observed mean concentrations. Removal of AA by PDV represented approximately 33% of total postabsorptive catabolic use, including use during absorption but excluding use for milk protein synthesis, and was apparently adequate to support endogenous N losses in feces of 18.4 g/d. As 69% of this use was from arterial blood, increased PDV catabolism of AA in part represents increased absorption of AA in excess of amounts required by other body tissues. Based on the present model, increased anabolic use of AA in the mammary and other tissues would reduce the catabolic use of AA by the PDV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three sheep fitted with a ruminal cannula and an abomasal catheter were used to study water kinetics and absorption of VFA infused continuously into the rumen. The effects of changing VFA concentrations in the rumen by shifting VFA infusion rates were investigated in an experiment with a 3 x 3 Latin square design. On experimental days, the animals received the basal infusion rate of VFA (271 mmol/h) during the first 2 h. Each animal then received VFA at a different rate (135, 394, or 511 mmol/h) for the next 7.5 h. Using soluble markers (polyethylene glycol and Cr-EDTA), ruminal volume, liquid outflow, apparent water absorption, and VFA absorption rates were estimated. There were no significant effects of VFA infusion rate on ruminal volume and water kinetics. As the VFA infusion rate was increased, VFA concentration and osmolality in the rumen were increased and pH was decreased. There was a biphasic response of liquid outflow to changes in the total VFA concentration in the rumen, as both variables increased together up to a total VFA concentration of 80.1 mM, whereas, beyond that concentration, liquid outflow remained stable at an average rate of 407 mL/h. There were significant linear (P = 0.003) and quadratic (P = 0.001) effects of VFA infusion rate on the VFA absorption rate, confirming that VFA absorption in the rumen is mainly a concentration-dependent process. The proportion of total VFA supplied that was absorbed in the rumen was 0.845 (0.822, 0.877, and 0.910 for acetate, propionate, and butyrate, respectively). The molar proportions of acetate, propionate, and butyrate absorbed were affected by the level of VFA infusion in the rumen, indicating that this level affected to a different extent the absorption of the different acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of feeding supplemental biotin on net absorption and metabolism of nutrients by the portal-drained viscera (PDV; the gut, pancreas, spleen and associated fat) and liver of lactating dairy cows was measured. Three cows in early to mid-lactation catheterised for measurements of net nutrient absorption and metabolism by the PDV and liver were fed a total-mixed ration with or without supplemental biotin at 20 mg/day using a switch-back design (ABA v. BAB) with three 2-week periods. There were no effects of feeding biotin on dry matter intake (22.2 kg/day), milk yield (29.5 kg/day) or milk composition. There was also no effect of feeding biotin on net release of glucose by the liver, net liver removal of glucose precursors (propionate, alanine, lactate) or net liver release of p-hydroxybutyrate. Feeding biotin increased net PDV release of ammonia. Reasons for the response are not certain, but a numerical increase in net PDV release of acetate suggests that rumen or hindgut fermentation was altered. Results of the present study do not support the hypothesis that supplemental biotin increases liver glucose production in lactating dairy cows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Green tea is thought to possess many beneficial effects on human health. However, the extent of green tea polyphenol biotransformation may affect its proposed therapeutic effects. Catechol-O-methyltransferase (COMT), the enzyme responsible for polyphenolic methylation, has a common polymorphism in the genetic code at position 158 reported to result in a 40% reduction in enzyme activity in in vitro studies. The current preliminary study was designed to investigate the impact of COMT genotype on green tea catechin absorption and metabolism in humans. Methods Twenty participants (10 of each homozygous COMT genotype) were recruited, and plasma concentration profiles were produced for epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and 4′-O-methyl EGCG after 1.1 g of Sunphenon decaffeinated green tea extract (836 mg green tea catechins), with a meal given after 60 min. Results For the entire group, EGCG, EGC, EC, ECG and 4′-O-methyl EGCG reached maximum concentrations of 1.09, 0.41, 0.33, 0.16 and 0.08 μM at 81.5, 98.5, 99.0, 85.5 and 96.5 min, respectively. Bimodal curves were observed for the non-gallated green tea catechins EGC and EC as opposed to single-peaked curves for the gallated green tea catechins EGCG and ECG. No significant parametric differences between COMT genotype groups were found. Conclusions In conclusion, the COMT Val(158/108)Met does not appear to have a dramatic influence on EGCG absorption and elimination. However, further pharmacokinetic research is needed to substantiate these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraterrestrial solar spectrum (ESS) is an important component in near infrared (near-IR) radiative transfer calculations. However, the impact of a particular choice of the ESS in these regions has been given very little attention. A line-by-line (LBL) transfer model has been used to calculate the absorbed solar irradiance and solar heating rates in the near-IR from 2000-10000 cm−1(1-5 μm) using different ESS. For overhead sun conditions in a mid-latitude summer atmosphere, the absorbed irradiances could differ by up to about 11 Wm−2 (8.2%) while the tropospheric and stratospheric heating rates could differ by up to about 0.13 K day−1 (8.1%) and 0.19 K day−1 (7.6%). The spectral shape of the ESS also has a small but non-negligible impact on these factors in the near-IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Picosecond transient absorption (TA) and time-resolved infrared (TRIR) measurements of rac-[Cr(phen)2(dppz)]3+ (1) intercalated into double-stranded guanine-containing DNA reveal that the excited state is very rapidly quenched. As no evidence was found for the transient electron transfer products, it is proposed that the back electron transfer reaction must be even faster (<3 ps).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the standard models of concentration addition and independent action predict overall toxicity of multicomponent mixtures reasonably, interactions may limit the predictive capability when a few compounds dominate a mixture. This study was conducted to test if statistically significant systematic deviations from concentration addition (i.e. synergism/antagonism, dose ratio- or dose level-dependency) occur when two taxonomically unrelated species, the earthworm Eisenia fetida and the nematode Caenorhabditis elegans were exposed to a full range of mixtures of the similar acting neonicotinoid pesticides imidacloprid and thiacloprid. The effect of the mixtures on C. elegans was described significantly better (p<0.01) by a dose level-dependent deviation from the concentration addition model than by the reference model alone, while the reference model description of the effects on E. fetida could not be significantly improved. These results highlight that deviations from concentration addition are possible even with similar acting compounds, but that the nature of such deviations are species dependent. For improving ecological risk assessment of simple mixtures, this implies that the concentration addition model may need to be used in a probabilistic context, rather than in its traditional deterministic manner. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk solids yield in modern dairy cows has increased linearly over the last 50 years, stressing the need for maximal dietary energy intake to allow genetic potential for milk energy yield to be realized with minimal negative effects on health and reproduction. Feeding supplemental starch is a common approach for increasing the energy density of the ration and supplying carbon for meeting the substantial glucose requirement of the higher yielding cow. In this regard, it is a long held belief that feeding starch in forms that increase digestion in the small intestine and glucose absorption will benefit the cow in terms of energetic efficiency and production response, but data supporting this dogma are equivocal. This review will consider the impact of supplemental starch and site of starch digestion on metabolic and production responses of lactating dairy cows, including effects on feed intake, milk yield and composition, nutrient partitioning, the capacity of the small intestine for starch digestion, and nutrient absorption and metabolism by the splanchnic tissues (the portal-drained viscera and liver). Whilst there appears to be considerable capacity for starch digestion and glucose absorption in the lactating dairy cow, numerous strategic studies implementing postruminal starch or glucose infusions have observed increases in milk yield, but decreased milk fat concentration such that there is little effect on milk energy yield, even in early lactation. Measurements of energy balance confirm that the majority of the supplemental energy arising from postruminal starch digestion is used with high efficiency to support body adipose and protein retention, even in early lactation. These responses may be mediated by changes in insulin status, and be beneficial to the cow in terms of reproductive success and well-being. However, shifting starch digestion from the rumen impacts the nitrogen economy of the cow as well by shifting the microbial protein gained from starch digestion from potentially absorbable protein to endogenous faecal loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extensive development of the ruminant forestomach sets apart their N economy from that of nonruminants in a number of respects. Extensive pregastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds into microbial protein. This process is fueled primarily by carbohydrate fermentation and includes extensive recycling of N between the body and gut lumen pools. Nitrogen recycling occurs via blood and gut lumen exchanges of urea and NH3, as well as endogenous gut and secretory N entry into the gut lumen, and the subsequent digestion and absorption of microbial and endogenous protein. Factors controlling urea transfer to the gut from blood, including the contributions of urea transporters, remain equivocal. Ammonia produced by microbial degradation of urea and dietary and endogenous AA is utilized by microbial fermentation or absorbed and primarily converted to urea. Therefore, microbial growth and carbohydrate fermentation affect the extent of NH3 absorption and urea N recycling and excretion. The extensive recycling of N to the rumen represents an evolutionary advantage of the ruminant in terms of absorbable protein supply during periods of dietary protein deficiency, or asynchronous carbohydrate and protein supply, but incurs a cost of greater N intakes, especially in terms of excess N excretion. Efforts to improve the efficiency of N utilization in ruminants by synchronizing fermentable energy and N availability have generally met with limited success with regards to production responses. In contrast, imposing asynchrony through oscillating dietary protein concentration, or infrequent supplementation, surprisingly has not negatively affected production responses unless the frequency of supplementation is less than once every 3 d. In some cases, oscillation of dietary protein concentration has improved N retention compared with animals fed an equal amount of dietary protein on a daily basis. This may reflect benefits of Orn cycle adaptations and sustained recycling of urea to the gut. The microbial symbiosis of the ruminant is inherently adaptable to asynchronous N and energy supply. Recycling of urea to the gut buffers the effect of irregular dietary N supply such that intuitive benefits of rumen synchrony in terms of the efficiency of N utilization are typically not observed in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon tetrafluoride (CF4) is included as a greenhouse gas within the Kyoto Protocol. There are significant discrepancies in the reported integrated infrared (IR) absorption cross section of CF4 leading to uncertainty in its contribution to climate change. To reduce this uncertainty, the IR spectrum of CF4 was measured in two different laboratories, in 0 933 hPa of air diluent at 296 +/- 2K over the wavelength range 600-3700 cm(-1) using spectral resolutions of 0.03 or 0.50 cm(-1). There was no discernable effect of diluent gas pressure or spectral resolution on the integrated IR absorption, and a value of the integrated absorption cross section of (1.90 +/- 0.17) x 10(-16) cm(2) molecule(-1) cm(-1) was derived. The radiative efficiency (radiative forcing per ppbv) and GWP (relative to CO2) of CF4 were calculated to be 0.102 W m(-2) ppbv(-1) and 7200 (100 year time horizon). The GWP for CF4 calculated herein is approximately 30% greater than that given by the Intergovernmental Panel on Climate Change (IPCC) [ 2002] partly due to what we believe to be an erroneously low value for the IR absorption strength of CF4 assumed in the calculations adopted by the IPCC. The radiative efficiency of CF4 is predicted to decrease by up to 40% as the CF4 forcing starts to saturate and overlapping absorption by CH4, H2O, and N2O in the atmosphere increases over the period 1750-2100. The radiative forcing attributable to increased CF4 levels in the atmosphere from 1750 to 2000 is estimated to be 0.004 W m(-2) and is predicted to be up to 0.033 W m(-2) from 2000 to 2100, dependent on the scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.