13 resultados para Personalized medicine trials
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper introduces a simple futility design that allows a comparative clinical trial to be stopped due to lack of effect at any of a series of planned interim analyses. Stopping due to apparent benefit is not permitted. The design is for use when any positive claim should be based on the maximum sample size, for example to allow subgroup analyses or the evaluation of safety or secondary efficacy responses. A final frequentist analysis can be performed that is valid for the type of design employed. Here the design is described and its properties are presented. Its advantages and disadvantages relative to the use of stochastic curtailment are discussed. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
Pharmacogenetic trials investigate the effect of genotype on treatment response. When there are two or more treatment groups and two or more genetic groups, investigation of gene-treatment interactions is of key interest. However, calculation of the power to detect such interactions is complicated because this depends not only on the treatment effect size within each genetic group, but also on the number of genetic groups, the size of each genetic group, and the type of genetic effect that is both present and tested for. The scale chosen to measure the magnitude of an interaction can also be problematic, especially for the binary case. Elston et al. proposed a test for detecting the presence of gene-treatment interactions for binary responses, and gave appropriate power calculations. This paper shows how the same approach can also be used for normally distributed responses. We also propose a method for analysing and performing sample size calculations based on a generalized linear model (GLM) approach. The power of the Elston et al. and GLM approaches are compared for the binary and normal case using several illustrative examples. While more sensitive to errors in model specification than the Elston et al. approach, the GLM approach is much more flexible and in many cases more powerful. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
This paper presents a simple Bayesian approach to sample size determination in clinical trials. It is required that the trial should be large enough to ensure that the data collected will provide convincing evidence either that an experimental treatment is better than a control or that it fails to improve upon control by some clinically relevant difference. The method resembles standard frequentist formulations of the problem, and indeed in certain circumstances involving 'non-informative' prior information it leads to identical answers. In particular, unlike many Bayesian approaches to sample size determination, use is made of an alternative hypothesis that an experimental treatment is better than a control treatment by some specified magnitude. The approach is introduced in the context of testing whether a single stream of binary observations are consistent with a given success rate p(0). Next the case of comparing two independent streams of normally distributed responses is considered, first under the assumption that their common variance is known and then for unknown variance. Finally, the more general situation in which a large sample is to be collected and analysed according to the asymptotic properties of the score statistic is explored. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
In the last 50 years science has provided new perspectives on the ancient art of herbal medicine. The present article discusses ways in which the evidence base for the professional use of 'Western' herbal medicine, as therapy to treat disease, known as phytotherapy, can be strengthened and developed. The evidence base for phytotherapy is small and lags behind that for the nutritional sciences, mainly because phytochemicals are ingested as complex mixtures that are incompletely characterised and have only relatively recently been subject to scientific scrutiny. While some methodologies developed for the nutritional sciences can inform phytotherapy research, opportunities for observational studies are more limited, although greater use could be made of patient case notes. Randomised clinical trials of single-herb interventions are relatively easy to undertake and increasing numbers of such studies are being published. Indeed, enough data are available on three herbs (ginkgo (Ginkgo biloba), St John's wort (Hypericum perforatum) and saw palmetto (Serenoa repens)) for meta-analyses to have been undertaken. However, phytotherapy is holistic therapy, using lifestyle advice, nutrition and individually-prescribed mixtures of herbs aimed at reinstating homeostasis. While clinical experience shows that this approach is applicable to a wide range of conditions, including chronic disease, evidence of its efficacy is scarce. Strategies for investigating the full holistic approach of phytotherapy and its main elements are discussed and illustrated through the author's studies at the University of Reading.
Resumo:
There is growing interest, especially for trials in stroke, in combining multiple endpoints in a single clinical evaluation of an experimental treatment. The endpoints might be repeated evaluations of the same characteristic or alternative measures of progress on different scales. Often they will be binary or ordinal, and those are the cases studied here. In this paper we take a direct approach to combining the univariate score statistics for comparing treatments with respect to each endpoint. The correlations between the score statistics are derived and used to allow a valid combined score test to be applied. A sample size formula is deduced and application in sequential designs is discussed. The method is compared with an alternative approach based on generalized estimating equations in an illustrative analysis and replicated simulations, and the advantages and disadvantages of the two approaches are discussed.
Resumo:
Concerns about potentially misleading reporting of pharmaceutical industry research have surfaced many times. The potential for duality (and thereby conflict) of interest is only too clear when you consider the sums of money required for the discovery, development and commercialization of new medicines. As the ability of major, mid-size and small pharmaceutical companies to innovate has waned, as evidenced by the seemingly relentless decline in the numbers of new medicines approved by Food and Drug Administration and European Medicines Agency year-on-year, not only has the cost per new approved medicine risen: so too has the public and media concern about the extent to which the pharmaceutical industry is open and honest about the efficacy, safety and quality of the drugs we manufacture and sell. In 2005 an Editorial in Journal of the American Medical Association made clear that, so great was their concern about misleading reporting of industry-sponsored studies, henceforth no article would be published that was not also guaranteed by independent statistical analysis. We examine the precursors to this Editorial, as well as its immediate and lasting effects for statisticians, for the manner in which statistical analysis is carried out, and for the industry more generally.
Resumo:
Background and aims: GP-TCM is the 1st EU-funded Coordination Action consortium dedicated to traditional Chinese medicine (TCM) research. This paper aims to summarise the objectives, structure and activities of the consortium and introduces the position of the consortium regarding good practice, priorities, challenges and opportunities in TCM research. Serving as the introductory paper for the GPTCM Journal of Ethnopharmacology special issue, this paper describes the roadmap of this special issue and reports how the main outputs of the ten GP-TCM work packages are integrated, and have led to consortium-wide conclusions. Materials and methods: Literature studies, opinion polls and discussions among consortium members and stakeholders. Results: By January 2012, through 3 years of team building, the GP-TCM consortium had grown into a large collaborative network involving ∼200 scientists from 24 countries and 107 institutions. Consortium members had worked closely to address good practice issues related to various aspects of Chinese herbal medicine (CHM) and acupuncture research, the focus of this Journal of Ethnopharmacology special issue, leading to state-of-the-art reports, guidelines and consensus on the application of omics technologies in TCM research. In addition, through an online survey open to GP-TCM members and non-members, we polled opinions on grand priorities, challenges and opportunities in TCM research. Based on the poll, although consortium members and non-members had diverse opinions on the major challenges in the field, both groups agreed that high-quality efficacy/effectiveness and mechanistic studies are grand priorities and that the TCM legacy in general and its management of chronic diseases in particular represent grand opportunities. Consortium members cast their votes of confidence in omics and systems biology approaches to TCM research and believed that quality and pharmacovigilance of TCM products are not only grand priorities, but also grand challenges. Non-members, however, gave priority to integrative medicine, concerned on the impact of regulation of TCM practitioners and emphasised intersectoral collaborations in funding TCM research, especially clinical trials. Conclusions: The GP-TCM consortium made great efforts to address some fundamental issues in TCM research, including developing guidelines, as well as identifying priorities, challenges and opportunities. These consortium guidelines and consensus will need dissemination, validation and further development through continued interregional, interdisciplinary and intersectoral collaborations. To promote this, a new consortium, known as the GP-TCM Research Association, is being established to succeed the 3-year fixed term FP7 GP-TCM consortium and will be officially launched at the Final GP-TCM Congress in Leiden, the Netherlands, in April 2012.
Resumo:
Seamless phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages, with stage 1 used to answer phase II objectives such as treatment selection and stage 2 used for the confirmatory analysis, which is a phase III objective. Although seamless phase II/III clinical trials are efficient because the confirmatory analysis includes phase II data from stage 1, inference can pose statistical challenges. In this paper, we consider point estimation following seamless phase II/III clinical trials in which stage 1 is used to select the most effective experimental treatment and to decide if, compared with a control, the trial should stop at stage 1 for futility. If the trial is not stopped, then the phase III confirmatory part of the trial involves evaluation of the selected most effective experimental treatment and the control. We have developed two new estimators for the treatment difference between these two treatments with the aim of reducing bias conditional on the treatment selection made and on the fact that the trial continues to stage 2. We have demonstrated the properties of these estimators using simulations
Resumo:
During the development of new therapies, it is not uncommon to test whether a new treatment works better than the existing treatment for all patients who suffer from a condition (full population) or for a subset of the full population (subpopulation). One approach that may be used for this objective is to have two separate trials, where in the first trial, data are collected to determine if the new treatment benefits the full population or the subpopulation. The second trial is a confirmatory trial to test the new treatment in the population selected in the first trial. In this paper, we consider the more efficient two-stage adaptive seamless designs (ASDs), where in stage 1, data are collected to select the population to test in stage 2. In stage 2, additional data are collected to perform confirmatory analysis for the selected population. Unlike the approach that uses two separate trials, for ASDs, stage 1 data are also used in the confirmatory analysis. Although ASDs are efficient, using stage 1 data both for selection and confirmatory analysis introduces selection bias and consequently statistical challenges in making inference. We will focus on point estimation for such trials. In this paper, we describe the extent of bias for estimators that ignore multiple hypotheses and selecting the population that is most likely to give positive trial results based on observed stage 1 data. We then derive conditionally unbiased estimators and examine their mean squared errors for different scenarios.