2 resultados para Permethrin
em CentAUR: Central Archive University of Reading - UK
Resumo:
Bed-sediments are a sink for many micro-organic contaminants in aquatic environments. The impact of toxic contaminants on benthic fauna often depends on their spatial distribution, and the fate of the parent compounds and their metabolites. The distribution of a synthetic pyrethroid, permethrin, a compound known to be toxic to aquatic invertebrates, was studied using river bed-sediments in lotic flume channels. trans/cis-Permethrin diagnostic ratios were used to quantify the photoisomerization of the trans isomer in water. Rates were affected by the presence of sediment particles and colloids when compared to distilled water alone. Two experiments in dark/light conditions with replicate channels were undertaken using natural sediment, previously contaminated with permethrin, to examine the effect of the growth of an algal biofilm at the sediment-water interface on diffusive fluxes of permethrin into the sediment. After 42 days, the bulk water was removed, allowing a fine sectioning of the sediment bed (i.e., every mm down to 5 mm and then 5-10 mm, then every 10 mm down to 50 mm). Permethrin was detected in all cases down to a depth of 5-10 mm, in agreement with estimates by the Millington and Quirk model, and measurements of concentrations in pore water produced a distribution coefficient (K-d) for each section, High K-d's were observed for the top layers, mainly as a result of high organic matter and specific surface area. Concentrations in the algal biofilm measured at the end of the experiment under light conditions, and increases in concentration in the top 1 mm of the sediment, demonstrated that algal/bacterial biofilm material was responsible for high K-d's at the sediment surface, and for the retardation of permethrin diffusion. This specific partition of permethrin to fine sediment particles and algae may enhance its threat to benthic invertebrates. In addition,the analysis of trans/cis-permethrin isomer ratios in sediment showed greater losses of trans-permethrin in the experiment under light conditions, which may have also resulted from enhanced biological activity at the sediment surface.
Resumo:
Cytochrome P450 activity in individual Chironomus riparius larvae was measured using a microtiter plate adaptation of the ethoxyresorufin-O-deethylase (EROD) assay. The sensitivity of this biomarker was tested by exposing larvae to phenobarbital (0.5 and 1.0 mM) and permethrin (1 and 10 mug/g). Both chemicals induced EROD activity in C. riparius larvae by up to 1.58-fold with PB and 2.47-fold with permethrin. EROD induction was more pronounced after 48 h. The initially high EROD activity in the controls suggested that P450s are induced by stress. Feeding levels prior to exposure also had a significant effect on EROD activity. EROD activity compared to the control was highest when larvae were fed double the normal ration. These results indicate that EROD activity in individual C. riparius may be a useful biomarker to add to a suite of biomarkers for the detection of freshwater pollution. (C) 2002 Elsevier Science (USA). All rights reserved.