5 resultados para Periodic solutions
em CentAUR: Central Archive University of Reading - UK
Resumo:
This report presents the canonical Hamiltonian formulation of relative satellite motion. The unperturbed Hamiltonian model is shown to be equivalent to the well known Hill-Clohessy-Wilshire (HCW) linear formulation. The in°uence of perturbations of the nonlinear Gravitational potential and the oblateness of the Earth; J2 perturbations are also modelled within the Hamiltonian formulation. The modelling incorporates eccentricity of the reference orbit. The corresponding Hamiltonian vector ¯elds are computed and implemented in Simulink. A numerical method is presented aimed at locating periodic or quasi-periodic relative satellite motion. The numerical method outlined in this paper is applied to the Hamiltonian system. Although the orbits considered here are weakly unstable at best, in the case of eccentricity only, the method ¯nds exact periodic orbits. When other perturbations such as nonlinear gravitational terms are added, drift is signicantly reduced and in the case of the J2 perturbation with and without the nonlinear gravitational potential term, bounded quasi-periodic solutions are found. Advantages of using Newton's method to search for periodic or quasi-periodic relative satellite motion include simplicity of implementation, repeatability of solutions due to its non-random nature, and fast convergence. Given that the use of bounded or drifting trajectories as control references carries practical di±culties over long-term missions, Principal Component Analysis (PCA) is applied to the quasi-periodic or slowly drifting trajectories to help provide a closed reference trajectory for the implementation of closed loop control. In order to evaluate the e®ect of the quality of the model used to generate the periodic reference trajectory, a study involving closed loop control of a simulated master/follower formation was performed. 2 The results of the closed loop control study indicate that the quality of the model employed for generating the reference trajectory used for control purposes has an important in°uence on the resulting amount of fuel required to track the reference trajectory. The model used to generate LQR controller gains also has an e®ect on the e±ciency of the controller.
Resumo:
Interactions between different convection modes can be investigated using an energy–cycle description under a framework of mass–flux parameterization. The present paper systematically investigates this system by taking a limit of two modes: shallow and deep convection. Shallow convection destabilizes itself as well as the other convective modes by moistening and cooling the environment, whereas deep convection stabilizes itself as well as the other modes by drying and warming the environment. As a result, shallow convection leads to a runaway growth process in its stand–alone mode, whereas deep convection simply damps out. Interaction between these two convective modes becomes a rich problem, even when it is limited to the case with no large–scale forcing, because of these opposing tendencies. Only if the two modes are coupled at a proper level can a self–sustaining system arise, exhibiting a periodic cycle. The present study establishes the conditions for self–sustaining periodic solutions. It carefully documents the behaviour of the two mode system in order to facilitate the interpretation of global model behaviours when this energy–cycle is implemented as a closure into a convection parameterization in future.
Resumo:
This paper represents the last technical contribution of Professor Patrick Parks before his untimely death in February 1995. The remaining authors of the paper, which was subsequently completed, wish to dedicate the article to Patrick. A frequency criterion for the stability of solutions of linear difference equations with periodic coefficients is established. The stability criterion is based on a consideration of the behaviour of a frequency hodograph with respect to the origin of coordinates in the complex plane. The formulation of this criterion does not depend on the order of the difference equation.
Resumo:
We study the linear and nonlinear stability of stationary solutions of the forced two-dimensional Navier-Stokes equations on the domain [0,2π]x[0,2π/α], where α ϵ(0,1], with doubly periodic boundary conditions. For the linear problem we employ the classical energy{enstrophy argument to derive some fundamental properties of unstable eigenmodes. From this it is shown that forces of pure χ2-modes having wavelengths greater than 2π do not give rise to linear instability of the corresponding primary stationary solutions. For the nonlinear problem, we prove the equivalence of nonlinear stability with respect to the energy and enstrophy norms. This equivalence is then applied to derive optimal conditions for nonlinear stability, including both the high-and low-Reynolds-number limits.