4 resultados para Pereda, Blas
em CentAUR: Central Archive University of Reading - UK
Resumo:
Entomopathogenic nematodes cannot be considered only as parasitic organisms. With dead Galleria mellonella larvae, we demonstrated that these nematodes use scavenging as an alternative survival strategy. We consider scavenging as the ability of entomopathogenic nematodes to penetrate, develop and produce offspring in insects which have been killed by causes other than the nematode-bacteria complex. Six Steinernema and two Heterorhabditis species scavenged but there were differences among them in terms of frequency of colonisation and in the time after death of G. mellonella larvae that cadavers were penetrated. The extremes of this behaviour were represented by Steinernema glaseri which was able to colonise cadavers which had been freeze-killed 240 h earlier and Heterorhabditis indica which only colonised cadavers which had been killed up to 72 h earlier. Also, using an olfactometer, we demonstrated that entomopathogenic nematodes were attracted to G. mellonella cadavers. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Entomopathogenic nematodes complete their life cycles inside dead insects. The emergence of new infective juveniles from the cadaver has been attributed (but never demonstrated) to food depletion or to the accumulation of metabolites from the breakdown of the host's tissues. Here we give evidence that emergence is triggered by ammonia, a product of nematode defecation. We found that the emergence of Steinernema feltiae infective juveniles from Galleria mellonella cadavers was stimulated by a particular level of ammonia. Emergence was delayed when ammonia in the cadaver was decreased and was prompted when increased. These findings will further improve the understanding of the nematode life cycle. Here we speculate that production of infective juveniles can be mediated by ammonia and work in a manner analogous to that of the clatter recovery inhibiting factor (DRIF) in Caenorhabditis elegans. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Entomopathogenic nematodes are able to survive by scavenging. We tested Steinernema feltiae, S. affine and Heterorhabditis megidis alone or in different combinations to evaluate the responses of these nematodes when dead or live Galleria mellonella larvae were offered. Steinernema feltiae and S. affine scavenged upon dead G. mellonella larvae and about 30% more dead larvae were penetrated than live ones. By contrast, H. megidis penetrated more live larvae than dead ones. When the nematode species were combined, the results varied among the combinations, but the dead larvae were always used as a host. The behaviour of natural field populations of S. feltiae and S. affine was also compared. Steinernema feltiae showed no difference between scavenging and performing 'normal infections', whereas S. affine scavenged to a reduced amount (around 60% less); this difference could be related to the particular foraging strategy of these nematodes.