21 resultados para Percolation flow problems
em CentAUR: Central Archive University of Reading - UK
Resumo:
In the Eady model, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can be partitioned cleanly into three mechanisms: (i) shear instability, (ii) resonance, and (iii) the Orr mechanism. Shear instability involves two-way interaction between Rossby edge waves on the ground and lid, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only interior PV anomalies. These mechanisms have distinct implications for the structural and temporal linear evolution of perturbations. Here, a new framework is developed in which the same mechanisms can be distinguished for growth on basic states with nonzero interior PV gradients. It is further shown that the evolution from quite general initial conditions can be accurately described (peak error in perturbation total energy typically less than 10%) by a reduced system that involves only three Rossby wave components. Two of these are counterpropagating Rossby waves—that is, generalizations of the Rossby edge waves when the interior PV gradient is nonzero—whereas the other component depends on the structure of the initial condition and its PV is advected passively with the shear flow. In the cases considered, the three-component model outperforms approximate solutions based on truncating a modal or singular vector basis.
Resumo:
We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO2 (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 g l(-1); whiled the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure. oxygen, an optimal flow rate was observed at 300 nil min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 ( +/-0.6) kJ mol(-1). (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
An efficient algorithm is presented for the solution of the equations of isentropic gas dynamics with a general convex gas law. The scheme is based on solving linearized Riemann problems approximately, and in more than one dimension incorporates operator splitting. In particular, only two function evaluations in each computational cell are required. The scheme is applied to a standard test problem in gas dynamics for a polytropic gas
Resumo:
An efficient algorithm is presented for the solution of the steady Euler equations of gas dynamics. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme is applied to a standard test problem of flow down a channel containing a circular arc bump for three different mesh sizes.
Resumo:
A numerical scheme is presented tor the solution of the shallow water equations in a single radial coordinate. This can prove useful when testing codes for the two-dimensional shallow water equations. The scheme is applied with success to problems involving converging and diverging bores.
Resumo:
Abstract A finite difference scheme is presented for the solution of the two-dimensional shallow water equations in steady, supercritical flow. The scheme incorporates numerical characteristic decomposition, is shock capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supercritical in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, isentropic flow. The scheme incorporates numerical characteristic decomposition, is shock-capturing by design and incorporates space marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
An efficient algorithm based on flux difference splitting is presented for the solution of the three-dimensional equations of isentropic flow in a generalised coordinate system, and with a general convex gas law. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The algorithm requires only one function evaluation of the gas law in each computational cell. The scheme has good shock capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for Mach 3 flow of air past a circular cylinder. Furthermore, the algorithm also applies to shallow water flows by employing the familiar gas dynamics analogy.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, compressible flow of real gases. The scheme incorparates numerical characteristic decomposition, is shock-capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow water equations in open channels. A linearised problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
This paper analyses the appraisal of a specialized form of real estate - data centres - that has a unique blend of locational, physical and technological characteristics that differentiate it from conventional real estate assets. Market immaturity, limited trading and a lack of pricing signals enhance levels of appraisal uncertainty and disagreement relative to conventional real estate assets. Given the problems of applying standard discounted cash flow, an approach to appraisal is proposed that uses pricing signals from traded cash flows that are similar to the cash flows generated from data centres. Based upon ‘the law of one price’, it is assumed that two assets that are expected to generate identical cash flows in the future must have the same value now. It is suggested that the expected cash flow of assets should be analysed over the life cycle of the building. Corporate bond yields are used to provide a proxy for the appropriate discount rates for lease income. Since liabilities are quite diverse, a number of proxies are suggested as discount and capitalisation rates including indexed-linked, fixed interest and zero-coupon bonds.
Resumo:
Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2, regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the presence of model error, this approach does not capture the initial state of the system accurately, as the initial state estimate is derived by minimizing the average error between the model predictions and the observations over a time window. Here we examine an alternative L1 regularization technique that has proved valuable in image processing. We show that for examples of flow with sharp fronts and shocks, the L1 regularization technique performs more accurately than standard L2 regularization.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.