3 resultados para Patterns recognition
em CentAUR: Central Archive University of Reading - UK
Resumo:
We present a method for the recognition of complex actions. Our method combines automatic learning of simple actions and manual definition of complex actions in a single grammar. Contrary to the general trend in complex action recognition that consists in dividing recognition into two stages, our method performs recognition of simple and complex actions in a unified way. This is performed by encoding simple action HMMs within the stochastic grammar that models complex actions. This unified approach enables a more effective influence of the higher activity layers into the recognition of simple actions which leads to a substantial improvement in the classification of complex actions. We consider the recognition of complex actions based on person transits between areas in the scene. As input, our method receives crossings of tracks along a set of zones which are derived using unsupervised learning of the movement patterns of the objects in the scene. We evaluate our method on a large dataset showing normal, suspicious and threat behaviour on a parking lot. Experiments show an improvement of ~ 30% in the recognition of both high-level scenarios and their composing simple actions with respect to a two-stage approach. Experiments with synthetic noise simulating the most common tracking failures show that our method only experiences a limited decrease in performance when moderate amounts of noise are added.
Resumo:
Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.
Resumo:
Periocular recognition has recently become an active topic in biometrics. Typically it uses 2D image data of the periocular region. This paper is the first description of combining 3D shape structure with 2D texture. A simple and effective technique using iterative closest point (ICP) was applied for 3D periocular region matching. It proved its strength for relatively unconstrained eye region capture, and does not require any training. Local binary patterns (LBP) were applied for 2D image based periocular matching. The two modalities were combined at the score-level. This approach was evaluated using the Bosphorus 3D face database, which contains large variations in facial expressions, head poses and occlusions. The rank-1 accuracy achieved from the 3D data (80%) was better than that for 2D (58%), and the best accuracy (83%) was achieved by fusing the two types of data. This suggests that significant improvements to periocular recognition systems could be achieved using the 3D structure information that is now available from small and inexpensive sensors.