4 resultados para Pasteurisation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of 25 mM calcium chloride to soy milk reduced pH, increased ionic calcium and caused it to coagulate. The effects of different chelating agents were investigated on selected physicochemical properties of soy milk and on preventing coagulation. The soy milks were then pasteurised to examine how heat treatment changed some of these properties as well as to evaluate their effects on heat stability. Sediment formation and susceptibility to coagulation could be reduced by decreasing ionic calcium and increasing pH. To achieve this, the most effective chelating agents were tri-sodium citrate and disodium hydrogen phosphate. These chelating agents also reduce absolute viscosity and particle size. Sodium hexa meta phosphate was also effective, but less so; it reduced ionic calcium but had a less noticeable effect on pH. The disodium salt of ethylenediamine tetraacetic acid was not effective, as it decreased the pH of soy milk. Ionic calcium and pH are useful indicators of heat stability of calcium-fortified soy beverages. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential to increase the concentrations of n-3 polyunsaturated fatty acids (PUFAs) in milk fat was investigated by studying the effects of feeding a xylose-treated, whole cracked linseed supplement ( rich in alpha-linolenic acid) to dairy cows. Also the effect of increasing the dietary intake of vitamin E on the vitamin E status of milk was investigated. The effect of pasteurisation on milk fatty acid composition was also examined. Using a 3 x 2 factorial design, a total of 60 Holstein dairy cows were fed a total mixed ration based on grass silage supplemented with one of three levels of whole cracked linseed (78, 142 or 209 g . kg(-1) diet dry matter (DM); designated LL, ML or HL, respectively) in combination with one of two levels of additional dietary vitamin E intake ( 6 or 12 g vitamin E . animal(-1) . day(-1); designated LE or HE, respectively). Increasing lipid supplementation reduced (P < 0.01) diet DM intake and milk yield, and increased (P < 0.001) the overall content of oleic, vaccenic, alpha-linolenic and conjugated linoleic acids, and total PUFAs and monounsaturated fatty acids (MUFA). Myristic and palmitic acids in milk fat were reduced ( P < 0.001) through increased lipid supplementation. While α-linolenic acid concentrations were substantially increased this acid only accounted for 0.02 of total fatty acids in milk at the highest level of supplementation (630 g α-linolenic acid &BULL; animal(-1) &BULL; day(-1) for HL). Conjugated linoleic acid concentrations in milk fat were almost doubled by increasing the level of lipid supplementation (8.9, 10.4 and 16.1 g &BULL; kg(-1) fatty acids for LL, ML and HL, respectively). Although milk vitamin E contents were generally increased there was no benefit (P > 0.05) of increasing vitamin E intake from 6 to 12 g . animal(-1) . day(-1). The fatty acid composition of milk was generally not affected by pasteurisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Native enzymes play a significant role in proteolysis of milk during storage. This is significant for heat resistant native enzymes. Plasmin is one of the most heat resistant enzymes found in milk. It has been reported to survive several heat treatments, causing spoilage during storage. The aim of this study was to assess susceptibility of high temperature heated milk to proteolysis by native enzymes. The trinitrobenzene sulphonic acid (TNBS) method was used for this purpose. Raw milk was heated at 110, 120, 130,142°C for 2 s and 85°C for 15 s and milk processed at low temperature (85°C /15s) was selected to mimic pasteurisation. TNBS method confirmed that raw milk and milk processed at 85°C /15s were the most proteolysed, whereas treatment of milk at high temperatures (110, 120, 130 and 142°C for 2 s) inactivated the native enzymes. It may thus be concluded that high temperature processing positively affects proteolysis by lowering its susceptibility to spoilage during storage.