33 resultados para Parametric Vibration
em CentAUR: Central Archive University of Reading - UK
Resumo:
Rotational structure has been resolved and analyzed in the 1049-cm−1 parallel fundamental and the 1182 cm−1 perpendicular fundamental bands in the infrared spectrum of the CH3F molecule. Combination bands at 2223 cm−1 and around 2650 cm−1 have also been studied. The effective resolving power of the spectrometer was 0.25 cm−1 for all these bands. The two long-wavelength fundamentals have been analyzed in much greater detail than in previous work, and a complete analysis of the perpendicular band has been made, including the J-structure in the P and R branches of the sub-bands. Rotational constants of CH3F determined in this work and elsewhere are summarized in Table XIII of the text. Some anomalous intensity perturbations in the rotation lines of the 1182-cm−1 fundamental have been observed, and are discussed.
Resumo:
High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.
Resumo:
Symmetry restrictions on Raman selection rules can be obtained, quite generally, by considering a Raman allowed transition as the result of two successive dipole allowed transitions, and imposing the usual symmetry restrictions on the dipole transitions. This leads to the same results as the more familiar polarizability theory, but the vibration-rotation selection rules are easier to obtain by this argument. The selection rules for symmetric top molecules involving the (+l) and (-l) components of a degenerate vibrational level with first-order Coriolis splitting are derived in this paper. It is shown that these selection rules depend on the order of the highest-fold symmetry axis Cn, being different for molecules with n=3, n=4, or n ≧ 5; moreover the selection rules are different again for molecules belonging to the point groups Dnd with n even, and Sm with 1/2m even, for which the highest-fold symmetry axes Cn and Sm are related by m=2n. Finally it is shown that an apparent anomaly between the observed Raman and infra-red vibration-rotation spectra of the allene molecule is resolved when the correct selection rules are used, and a value for the A rotational constant of allene is derived without making use of the zeta sum rule.
Resumo:
The lowest-wavenumber vibration of HCNO and DCNO, ν5, is known to involve a largeamplitude low-frequency anharmonic bending of the CH bond against the CNO frame. In this paper the anomalous vibrational dependence of the observed rotational constants B(v5, l5), and of the observed l-doubling interactions, is interpreted according to a simple effective vibration-rotation Hamiltonian in which the appropriate vibrational operators are averaged in an anharmonic potential surface over the normal coordinates (Q5x, Q5y). All of the data on both isotopes are interpreted according to a single potential surface having a minimum energy at a slightly bent configuration of the HCN angle ( 170°) with a maximum at the linear configuration about 2 cm−1 higher. The other coefficients in the Hamiltonian are also interpreted in terms of the structure and the harmonic and anharmonic force fields; the substitution structure at the “hypothetical linear configuration” determined in this way gives a CH bond length of 1.060 Å, in contrast to the value 1.027 Å determined from the ground-state rotational constants. We also discuss the difficulties in rationalizing our effective Hamiltonian in terms of more fundamental theory, as well as the success and limitations of its use in practice.
Resumo:
Infrared spectra of the trans and the cis isomers of nitrous acid, both HONO and DONO, have been observed in the gas phase using a Fourier transform interferometer with a resolution of about 0.05 cm−1 from 4000 to 500 cm−1. Rotational analyses are reported on eleven of the fundamentals and some overtones.
Resumo:
Vibration-rotation spectra of HOCl have been measured at a resolution of 0.05 cm−1 to determine vibration rotation constants, and 35–37 Cl isotope shifts in the vibration frequencies. The spectrum of DOCl has also been recorded, and a preliminary analysis for the band origins has been made. The vibrational frequency data and centrifugal distortion constants have been used to determine the harmonic force field in a least-squares refinement; the force field obtained also gives a good fit to data on the vibrational contributions to the inertial defect. The equilibrium rotational constants of HOCl have been obtained, and an equilibrium structure has been estimated.
Resumo:
Some absorption bands of diazomethane vapour between 1950-3500 cm-1 have been measured with very high resolving power. The rotational structure of two parallel bands and of one perpendicular band has been resolved, and approximate values have been determined for the rotational constants. The results are consistent with the geometrical structure usually accepted for this molecule. A peculiarity in the results for the band near 2100 cm-1, together with other facts, leads to the suggestion that a tautomeric form of this molecule exists, HCN=NH, being an isoelectronic analogue of hydrazoic acid.
Resumo:
High-resolution Fourier-transform infrared spectra have been recorded and analyzed for the nu4, nu5, and nu6 fundamental bands of trans-HONO, and for the nu4 fundamental of cis-HONO. The spectral resolution was better than 0.01/cm, and the rotational structure has been analyzed to give improved ground-state and excited-state rotational constants, with a standard deviation of the fit to the observed line positions of around 0.0006/cm. Two Coriolis interactions have been analyzed between the nu5 and nu6 bands of trans-HONO.
Resumo:
High resolution vibration-rotation spectra of 13C2H2 were recorded in a number of regions from 2000 to 5200 cm−1 at Doppler or pressure limited resolution. In these spectral ranges cold and hot bands involving the bending-stretching combination levels have been analyzed up to high J values. Anharmonic quartic resonances for the combination levels ν1 + mν4 + nν5, ν2 + mν4 + (n + 2) ν5 and ν3 + (m − 1) ν4 + (n + 1) ν5 have been studied, and the l-type resonances within each polyad have been explicitly taken into account in the analysis of the data. The least-squares refinement provides deperturbed values for band origins and rotational constants, obtained by fitting rotation lines only up to J ≈ 20 with root mean square errors of ≈ 0.0003 cm−1. The band origins allowed us to determine a number of the anharmonicity constants xij0.
Resumo:
The fundamental vibration-rotational absorption band of hydrogen chloride near 3 45,t has been remeasured using higher resolving power than previously. The wave-lengths of the absorption lines have been determined more precisely, and the isotopic splitting of lines has been completely resolved. The results have provided new and more satisfactory values for the rotational constants Bi, and the centrifugal stretching constants Di, and their relative values for the two isotopic species agree closely with what is to be expected for the difference in mass. The positions of the lines in the pure rotational absorption spectrum have been calculated from the derived data, and agree closely with those recently observed. The bond lengths re for each isotopic species H35C1 and H37C1 is found to be 1-2744A.
Resumo:
Rotation lines in the fundamental vibration bands of 13C16O and 12C180 have been measured, using very high resolving power and more accurate wavelength calibrations than previously. The molecular rotational and vibrational constants have been deduced and compared in relation to the mass differences between these molecules and the main species 12C160.
Resumo:
The problems of inverting experimental information obtained from vibration-rotation spectroscopy to determine the potential energy surface of a molecule are discussed, both in relation to semi-rigid molecules like HCN, NO2, H2CO, etc., and in relation to non-rigid or floppy molecules with large amplitude vibrations like HCNO, C3O2, and small ring molecules. Although standard methods exist for making the necessary calculations in the former case, they are complex, and they require an abundance of precise data on the spectrum that is rarely available. In the case of floppy molecules there are often data available over many excited states of the large amplitude vibration, but there are difficulties in knowing the precise form of the large amplitude coordinate(s), and in allowing for the vibrational averaging effects of the other modes. In both cases difficulties arise from the curvilinear nature of the vibrational paths which are not adequately handled by our present theories.